View More View Less
  • 1 Yangzhou University, Yangzhou 225002, People’s Republic of China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A subgroup H of G is called M p-embedded in G, if there exists a p-nilpotent subgroup B of G such that H p ∈ Sylp(B) and B is M p-supplemented in G. In this paper, we use M p-embedded subgroups to study the structure of finite groups.

  • [1]

    Asaad, M. and Heliel, A. A., On S-quasinormality embedded subgroups of finite groups, J. Pure Appl. Algebra, 165 (2001), 129135.

  • [2]

    Ballester-Bolinches, A. and Pedraza Aguilera, M. C., Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127 (1998), 113223.

    • Search Google Scholar
    • Export Citation
  • [3]

    Doerk, K. and Hawkes, T., Finite Soluble Groups, de Gruyter, Berlin/New York, 1992.

  • [4]

    Huppert, B. and Blackburn, N., Finite Groups III, Springer-Verlag, Berlin-New York, 1982.

  • [5]

    Guo, W., The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000.

    • Search Google Scholar
    • Export Citation
  • [6]

    Guo, W., On F-supplemented subgroups of finite groups, Manuscripta Math., 127 (2008), 139150.

  • [7]

    Guo, W. and Skiba, A. N., On FΦ*-hypercentre of finite groups, J. Algebra, 372 (2012), 275292.

  • [8]

    Miao, L. and Lempken, W., On M-supplemented subgroups of finite groups, J. Group Theory, 12 (2009), 271289.

  • [9]

    Miao, L., On p-nilpotency of finite groups, Bull. Braz. Math. Soc., 38(4) (2007), 585594.

  • [10]

    Shemetkov, L. A. and Skiba, A. N., On the XF-hypercentre of finite groups, J. Algebra, 322 (2009), 21062117.

  • [11]

    Monakhov, V. S. and Shnyparkov, A. V., On the p-supersolubility of a finite group with a M-supplemented Sylow p-subgroup, Siberian Math. J., 50(4) (2009), 681686.

    • Search Google Scholar
    • Export Citation
  • [12]

    Skiba, A. N., On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (2007), 192209.

  • [13]

    Wang, Y. , Wei, H. and Li, Y., A generalization of Kramer’s theorem and its applications, Bull. Austral. Math. Soc., 65 (2002), 467475.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu