View More View Less
  • 1 Mehmet Akif Ersoy University, 15100, Burdur, Turkey
  • 2 Nevşehir Haci Bektaş Veli University, 50300, Nevşehir, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we study dissipative q-Sturm—Liouville operators in Weyl’s limit circle case. We describe all maximal dissipative, maximal accretive, self adjoint extensions of q-Sturm—Liouville operators. Using Livšic’s theorems, we prove a theorem on completeness of the system of eigenvectors and associated vectors of the dissipative q-Sturm—Liouville operators.

  • [1]

    Jackson, F. H., On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb., 46 (1908), 6472.

  • [2]

    Abdel-Gawad, H. I. and Aldailami, A. A., On q-dynamic equations modelling and complexity, Appl. Math. Model., 34(3) (2010), 697709.

  • [3]

    Algin, A., A comparative study on q-deformed fermion oscillators, Int. J. Theor. Phys., 50(5) (2011), 15541568.

  • [4]

    Bouzeffour, F., Inversion formulas for q-Riemann–Liouville and q-Weyl transforms, J. Math. Anal. Appl., 336(2) (2007), 833848.

  • [5]

    Dobrogowska, A. and Odzijewicz, A., Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math., 193(1) (2006), 319346.

    • Search Google Scholar
    • Export Citation
  • [6]

    Dobrogowska, A. and Odzijewicz, A., Solutions of the q-deformed Schrödinger equation for special potentials, J. Phys. A Math. Theor., 40(9) (2007), 20232036.

    • Search Google Scholar
    • Export Citation
  • [7]

    Eremin, V. V. and Meldianov, A. A., The q-deformed harmonic oscillator, coherent states, and the uncertainty relation, Theor. Math. Phys., 147(2) (2006), 709715. Translation from Teor. Mat. Fiz., 147(2) (2006), 315–322.

    • Search Google Scholar
    • Export Citation
  • [8]

    Ferreira, R. A. C., Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theor. Differ. Equat., 10(70) (2010), 10.

    • Search Google Scholar
    • Export Citation
  • [9]

    Karabulut, H., Distributed Gaussian polynomials as q-oscillator eigenfunctions, J. Math. Phys., 47(1) (2006).

  • [10]

    Lutzenko, I., Spiridonov, V. and Zhedanov, A., On the spectrum of a q-scillator with a linear interaction, Phys. Lett. A, 204(3–4) (1995), 236242.

    • Search Google Scholar
    • Export Citation
  • [11]

    Sergeev, S., Quantum curve in q-oscillator model, Int. J. Math. Sci., 31 (2006) (Art. ID 92064).

  • [12]

    Tsuda, T., On an integrable system of q-difference equations satisfied by the universal characters: Its lax formalism and an application to q-painlevé equations, Comm. Math. Phys., 293(2) (2010), 347359.

    • Search Google Scholar
    • Export Citation
  • [13]

    Ben Hammouda, M. S. and Nemri, A., Polynomial expansions for solutions of higher-order q-Bessel heat equation, Tamsui Oxf. J. Math. Sci., 24(2) (2008), 153174.

    • Search Google Scholar
    • Export Citation
  • [14]

    Field, C. M., Joshi, N. and Nijhoff, F. W., q-difference equations of KdV type and Chazy-type second-degree difference equations, J. Phys. A Math. Theor., 41(33), (2008).

    • Search Google Scholar
    • Export Citation
  • [15]

    Gorbachuk, M. L. and Gorbachuk, V. I., Boundary Value Problems for Operator Differential Equations, Naukova Dumka, Kiev, 1984; English transl. 1991, Birkhauser Verlag.

    • Search Google Scholar
    • Export Citation
  • [16]

    Mabrouk, H., q-heat operator and q-Poisson’s operator, Fract. Calc. Appl. Anal., 9(3) (2006), 265286.

  • [17]

    Nemri, A. and Fitouhi, A., Polynomial expansions for solution of wave equation in quantum calculus, Matematiche, 65(1) (2010), 7382.

    • Search Google Scholar
    • Export Citation
  • [18]

    Annaby, M. H. and Mansour, Z. S., Basic Sturm–Liouville problems, J. Phys. A, Math Gen., 38(17) (2005), 37753797.

  • [19]

    Annaby, M. H., Hassan, H. A. and Mansour, Z. S., Sampling theorems associated with singular q-Sturm–Liouville problems, doi:10.1007/s00025-011-0134-9

    • Search Google Scholar
    • Export Citation
  • [20]

    Annaby, M. H., Mansour, Z. S. and Ashour, O. A., Sampling theorems associated with biorthogonal q-Bessel functions, J. Phys. A Math. Theor., 43(29), (2010).

    • Search Google Scholar
    • Export Citation
  • [21]

    Annaby, M. H. and Mansour, Z. S., q-Fractional Calculus and Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg 2012.

    • Search Google Scholar
    • Export Citation
  • [22]

    Bairamov, E. and Ugurlu, E., The determinants of dissipative Sturm–Liouville operators with transmission conditions, Math. Comput. Model., 53 (2011), 805813.

    • Search Google Scholar
    • Export Citation
  • [23]

    Bairamov, E. and Ugurlu, E., Krein’s theorems for a Dissipative Boundary Value Transmission Problem, Complex Anal. Oper. Theory, doi: 10.1007/s11785-011-1180-z.

    • Search Google Scholar
    • Export Citation
  • [24]

    Eryilmaz, A., Spectral analysis of q-Sturm–liouville problem with the spectral parameter in the boundary condition, Journal of Function Spaces and Applications, vol. 2012, Article ID736437, 17 pages, 2012.

    • Search Google Scholar
    • Export Citation
  • [25]

    Eryilmaz, A. and Tuna, H., Spectral Theory of Dissipative q-Sturm–liouville problems, Studia Scientiarum Mathematicarum Hungarica, DOI: 10.1556/SScMath.2014.1289, (2014).

    • Search Google Scholar
    • Export Citation
  • [26]

    Guseinov, G., Completeness theorem for the dissipative Sturm–Liouville operator, Doga-Tr. J. Math, 17 (1993), 4854.

  • [27]

    Guseinov, G. Sh. and Tuncay, H., The determinants of perturbation connected with a dissipative Sturm–Liouville operator, J. Math. Anal. Appl., 194 (1995), 3949.

    • Search Google Scholar
    • Export Citation
  • [28]

    Wang, Z. and Wu, H., The completeness of eigenfunctions of perturbation connected with Sturm–Liouville operators, J. Syst. Sci. Complex., 19 (2006), 112.

    • Search Google Scholar
    • Export Citation
  • [29]

    Gohberg, I. C. and Krein, M. G., Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, 1969.

  • [30]

    Naimark, M. A., Linear Differential Operators, 2nd edn., 1968, Nauka, Moscow, English transl. of 1st. edn., 1, 2, 1969, New York.

  • [31]

    Abdi, W. H., Certain inversion and representation formulae for q-Laplace transforms, Math. Z., 83 (1964), 238249.

  • [32]

    Abreu, L. D., Sampling theory associated with q-difference equations of the Sturm–Liouville type, J. Phys. A, 38(48) (2005), 1031110319.

    • Search Google Scholar
    • Export Citation
  • [33]

    Al-Salam, W. A. and Verma, A., A fractional Leibniz q-formula, Pac. J. Math., 60(2) (1975), 19.

  • [34]

    Andrews, G. E., Askey, R. and Roy, R., Special Functions, Cambridge University Press, Cambridge, 1999.

  • [35]

    Gao-Wa, Qi , Guo-Lin, Hou, Completeness of eigenfunction systems for the product of two symmetric operator matrices and its application in elasticity, Chinese Phys. B, 20, 124601. doi:10.1088/1674-1056/20/12/124601

  • [36]

    Kac, V. and Cheung, P., Quantum calculus, New York: Springer; 2002.

  • [37]

    Tuna, H. and Eryilmaz, A., Completeness of the system of root functions of q-Sturm–liouville operators, Math. Commun., 19 (2014), 6573.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu