View More View Less
  • 1 Sichuan Normal University, Chengdu, Sichuan, 610068, P.R. China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we concern the Principal Ideal Theorem (PIT) for w-Noetherian rings. Let R be a w-Noetherian ring and a be a nonzero nonunit element of R. If p is a prime ideal of R minimal over (a), then ht p ≦ 1.

  • [1]

    Barucci, V., Anderson, D. F. and Dobbs, D. E., Coherent Mori domains and the Principal Ideal Theorem, Comm. Algebra, 15 (1987), 11191156.

    • Search Google Scholar
    • Export Citation
  • [2]

    Chen, Y. H. and Yin, H. Y., The Principal Ideal Theorem for modules, J. Sichuan Norm. Univ., 32 (2009), 269272 (in Chinese).

  • [3]

    Chang, G. W., On the Principal Ideal Theorem, Bull. Korean Math. Soc., 36 (1999), 655660.

  • [4]

    Huckaba, J. A., Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.

  • [5]

    Kaplansky, I., Commutative Rings (Revised ed.), Univ. of Chicago Press, Chicago, 1974.

  • [6]

    Wang, F. G. and McCasland, R. L., On strong Mori domains, J. Pure Appl. Algebra, 135 (1999), 155165.

  • [7]

    Wang, F. G. and Zhang, J., Injective modules over w-Noetherian rings, Acta Mathematica Sinica (Chinese Series), 53 (2010), 11191130.

    • Search Google Scholar
    • Export Citation
  • [8]

    Yin, H. Y., Wang, F. G., Zhu, X. S. and Chen, Y. H., w-Modules over commutative rings, J. Korean Math. Soc., 48 (2011), 207222.

  • [9]

    Yin, H. Y. and Chen, Y. H., w-overrings of w-Noetherian rings, Studia Sci. Math. Hungar., 49 (2012), 200205.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu