View More View Less
  • 1 Ivane Javakhishvili Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper we establish approximation properties of Cesàro (C, −α) means with α ∈ (0, 1) of Vilenkin—Fourier series. This result allows one to obtain a condition which is sufficient for the convergence of the means σnα(f, x) to f(x) in the Lp-metric.

  • [1]

    Agaev, G. N., Vilenkin, N. Ya., Dzhafarli, G. M. and Rubinshtejn, A. I., Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehlm, 1981 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [2]

    Fine, N. J., Cesàro summability of Walsh–Fourier series, Proc. Nat.Acad. Sci. U.S.A., 41 (1995), 558591.

  • [3]

    Golubov, B. I., Efimov, A. V. and Skvortsov, V. A., “Series and transformation of Walsh,” Nauka, Moscow, 1987 [In Russian]; English translation, Kluwer Academic, Dordrecht, 1991.

    • Search Google Scholar
    • Export Citation
  • [4]

    Goginava, U., On the uniform convergence of Walsh–Fourier series, Acta Math. Hungar., 93 (2001), no. 1–2, 5970.

  • [5]

    Goginava, U., On the approximation properties of Cesàro means of negative order of Walsh–Fourier series, J. Approx. Theory, 115 (2002), no. 1, 920.

    • Search Google Scholar
    • Export Citation
  • [6]

    Goginava, U., Uniform convergence of Cesàro means of negative order of double Walsh–Fourier series, J. Approx. Theory, 124 (2003), no. 1, 96108.

    • Search Google Scholar
    • Export Citation
  • [7]

    Goginava, U. and Nagy, K., On the maximal operator of Walsh–Kaczmarz–Fejér means, Czechoslovak Math. J., 61(136) (2011), no. 3, 673686.

    • Search Google Scholar
    • Export Citation
  • [8]

    Gát, G. and Goginava, U., A weak type inequality for the maximal operator of (C, α)-means of Fourier series with respect to the Walsh–Kaczmarz system, Acta Math. Hungar., 125 (2009), no. 1–2, 6583.

    • Search Google Scholar
    • Export Citation
  • [9]

    Gát, G. and Nagy, K., Cesàro summability of the character system of the p-series field in the Kaczmarz rearrangement, Anal. Math., 28 (2002), no. 1, 123.

    • Search Google Scholar
    • Export Citation
  • [10]

    Nagy, K., Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series, East J. Approx., 16 (2010), no. 3, 297311.

    • Search Google Scholar
    • Export Citation
  • [11]

    Simon, P. and Weisz, F., Weak inequalities for Cesàro and Riesz summability of Walsh–Fourier series, J. Approx. Theory, 151 (2008), no. 1, 119.

    • Search Google Scholar
    • Export Citation
  • [12]

    Schipp, F., Über gewisse Maximaloperatoren, Ann. Univ. Sci. Budapest. Sect. Math., 18 (1975), 189195.

  • [13]

    Schipp, F., Wade, W. R., Simon, P. and Pál, J., “Walsh Series, Introduction to Dyadic Harmonic Analysis,” Hilger, Bristol, 1990.

  • [14]

    Tevzadze, V. I., Uniform (C,-a) summability of Fourier series with respect to the Walsh–Paley system, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22 (2006), no. 1, 4161 (electronic).

    • Search Google Scholar
    • Export Citation
  • [15]

    Zhizhiashvili, L. V., Trigonometric Fourier series and their conjugates, Tbilisi, 1993 (Russian); English transl.: Kluwer Acad. publ; 1996.

    • Search Google Scholar
    • Export Citation
  • [16]

    Zygmund, A., Trigonometric series. Vo1. 1, Cambridge University Press, Cambridge, UK, 1959.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu