View More View Less
  • 1 Razi University, 67149 Kermanshah, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we study the existence of multiple solutions for a class of impulsive perturbed elastic beam equations of Kirchhoff-type. We give a new criteria for guaranteeing that the impulsive perturbed elastic beam equations of Kirchhoff-type have at least three generalized solutions by using a variational method and a critical points theorem of B. Ricceri.

  • [1]

    Afrouzi, G. A., Hadjian, A. and Heidarkhani, S., Multiplicity results for a class of two-point boundary value systems investigated via variational methods, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No. 4 (2012), 343352.

    • Search Google Scholar
    • Export Citation
  • [2]

    Afrouzi, G. A., Hadjian, A. and Radulescu, V., Variational approach to fourthorder impulsive differential equations with two control parameters, Results. Math., 465 (2014), 371384.

    • Search Google Scholar
    • Export Citation
  • [3]

    Afrouzi, G. A., Heidarkhani, S. and O’Regan, D., Existence of three solutions for a doubly eigenvalue fourth-order boundary value problem, Taiwanese J. Math., 15 (2011), 201210.

    • Search Google Scholar
    • Export Citation
  • [4]

    Alves, C. O., Corrêa, F. S. J. A. and Ma, T. F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 8593.

    • Search Google Scholar
    • Export Citation
  • [5]

    Arosio, A. and Panizzi, S., On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305330.

  • [6]

    Bai, L. and Dai, B., Application of variational method to a class of Dirichlet boundary value problems with impulsive effects, J. Franklin Inst., 348 (2011), 26072624.

    • Search Google Scholar
    • Export Citation
  • [7]

    Bainov, D. and Simeonov, P., Systems with Impulse Effect, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester (1989).

    • Search Google Scholar
    • Export Citation
  • [8]

    Benchohra, M., Henderson, J. and Ntouyas, S. K., Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York (2006).

    • Search Google Scholar
    • Export Citation
  • [9]

    Benchohra, M., Henderson, J. and Ntouyas, S., Theory of impulsive differential equations, Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York (2006).

    • Search Google Scholar
    • Export Citation
  • [10]

    Bonanno, G. and Di Bella, B., A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 11661176.

    • Search Google Scholar
    • Export Citation
  • [11]

    Bonanno, G. and Di Bella, B., Infinitely many solutions for a fourth-order elastic beam equation, Nonl. Differ. Equ. Appl., 18 (2011), 357368.

    • Search Google Scholar
    • Export Citation
  • [12]

    Bonanno, G., Di Bella, B. and Henderson, J., Existence of solutions to secondorder boundary-value problems with small perturbations of impulses, Electron. J. Differ. Eqs., Vol. 2013 (2013), No. 126, pp. 114.

    • Search Google Scholar
    • Export Citation
  • [13]

    Bonanno, G., Di Bella, B. and O’Regan, D., Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl., 62 (2011), 18621869.

    • Search Google Scholar
    • Export Citation
  • [14]

    Cabada, A. and Tersian, S., Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations, Bound. Value Probl., 2014 (2014), 105.

    • Search Google Scholar
    • Export Citation
  • [15]

    Candito, P. and Molica Bisci, G., Existence of solutions for a nonlinear algebraic system with a parameter, Appl. Math. Comput., 218 (2012), 1170011707.

    • Search Google Scholar
    • Export Citation
  • [16]

    Candito, P. and Molica Bisci, G., Existence of two solutions for a nonlinear second-order discrete boundary value problem, Adv. Nonlinear Stud., 11 (2011), 443453.

    • Search Google Scholar
    • Export Citation
  • [17]

    Candito, P. and Molica Bisci, G., Multiple solutions for a Navier boundary value problem involving the p-biharmonic operator, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 741751.

    • Search Google Scholar
    • Export Citation
  • [18]

    Carter, T. E., Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dyn. Control, 10 (2000), 219227.

    • Search Google Scholar
    • Export Citation
  • [19]

    Chen, H. and He, Z., New results for perturbed Hamiltonian systems with impulses, Appl. Math. Comput., 1218 (2012), 94899497.

  • [20]

    Chen, L. and Sun, J., Nonlinear boundary value problem for first order impulsive functional differential equations, J. Math. Anal. Appl., 318 (2006), 726741.

    • Search Google Scholar
    • Export Citation
  • [21]

    Chen, L., Tisdel, C. C. and Yuan, R., On the solvability of periodic boundary value problems with impulse, J. Math. Anal. Appl., 331 (2007), 233244.

    • Search Google Scholar
    • Export Citation
  • [22]

    Chu, J. and Nieto, J. J., Impulsive periodic solution of first-order singular differential equations, Bull. London. Math. Soc., 40 (2008), 143150.

    • Search Google Scholar
    • Export Citation
  • [23]

    Gao, Q., The solvability and numerical simulation for the elastic beam problems with nonlinear boundary conditions, Abstr. Appl. Anal., 2014 (2014), 7.pages.

    • Search Google Scholar
    • Export Citation
  • [24]

    Graef, J. R., Heidarkhani, S. and Kong, L., A variational approach to a Kirchhoff-type problem involving two parameters, Results. Math., 63 (2013), 877889.

    • Search Google Scholar
    • Export Citation
  • [25]

    He, X. and Zou, W., Infinitely many positive solutions for Kirchhoff-type problems, Nonl. Anal. TMA, 70 (2009), 14071414.

  • [26]

    Heidarkhani, S., Infinitely many solutions for systems of n two-point Kirchhofftype boundary value problems, Ann. Polon. Math., 2 (2013), 133152.

    • Search Google Scholar
    • Export Citation
  • [27]

    Heidarkhani, S., Afrouzi, G. A., Ferrara, M. and Moradi, Shahin, Variational approaches to impulsive elastic beam equations of Kirchhoff-type, preprint.

    • Search Google Scholar
    • Export Citation
  • [28]

    Heidarkhani, S., Ferrara, M. and Khademloo, S., Nontrivial solutions for one-dimensional fourth-order Kirchhoff-type equations, Mediterr. J. Math., to appear.

    • Search Google Scholar
    • Export Citation
  • [29]

    Heidarkhani, S., Ferrara, M. and Salari, A., Infinitely many periodic solutions for a class of perturbed second-order differential equations with impulses, Acta Appl. Math., 139 (2015), 8194.

    • Search Google Scholar
    • Export Citation
  • [30]

    Heidarkhani, S., Caristi, G. and Salari, A., Nontrivial solutions for impulsive elastic beam equations of Kirchhoff-type, preprint.

  • [31]

    Heidarkhani, S. and Karami, M., Infinitely many solutions for a class of Dirichlet boundary value problems with impulsive effects, Bull. Math. Soc. Sci. Math. Roumanie, Tome 58(106), No. 2 (2015), 167179.

    • Search Google Scholar
    • Export Citation
  • [32]

    Lakshmikantham, V., Bainov, D. D. and Simeonov, P. S., Impulsive differential equations and inclusions, World Scientific, Singapore (1989).

    • Search Google Scholar
    • Export Citation
  • [33]

    Lakshmikantham, V., Bainov, D. D. and Simeonov, P. S., Theory of impulsive differential equations, Series in Modern Applied Mathematics, vol. 6, World Scientific, Teaneck, NJ (1989).

    • Search Google Scholar
    • Export Citation
  • [34]

    Liu, X. and Li, W., Existence and multiplicity of solutions for fourth-order boundary values problems with parameters, J. Math. Anal. Appl., 327 (2007), 362375.

    • Search Google Scholar
    • Export Citation
  • [35]

    Liu, X. and Willms, A. R., Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft, Math. Probl. Eng., 2 (1996), 277299.

    • Search Google Scholar
    • Export Citation
  • [36]

    Ma, R. and Wang, H., On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59 (1995), 225231.

    • Search Google Scholar
    • Export Citation
  • [37]

    Marano, S. A., Molica Bisci, G. and Motreanu, D., Multiple solutions for a class of elliptic hemivariational inequalities, J. Math. Anal. Appl., 337 (2008), 8597.

    • Search Google Scholar
    • Export Citation
  • [38]

    Mao, A. and Zhang, Z., Sign-changing and multiple solutions of Kirchhoff-type problems without the P.S. condition, Nonl. Anal. TMA, 70 (2009), 12751287.

    • Search Google Scholar
    • Export Citation
  • [39]

    Nieto, J. J. and Rodriguez-Lopez, R., New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328 (2007), 13431368.

    • Search Google Scholar
    • Export Citation
  • [40]

    Peletier, L. A. and Troy, W. C., Stationary solutions of a fourth-order nonlinear diffusion equation, J. Differ. Eqs., 31 (1995), 301314.

    • Search Google Scholar
    • Export Citation
  • [41]

    Perera, K. and Zhang, Z. T., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Eqs., 221 (2006), 246255.

    • Search Google Scholar
    • Export Citation
  • [42]

    Samoilenko, A. M. and Perestyuk, N. A., Impulsive differential equations, World Scientific, Singapore (1995).

  • [43]

    Sun, J., Chen, H. and Yang, L., Variational methods to fourth-order impulsive differential equations, J. Appl. Math. Comput., 35 (2011), 323340.

    • Search Google Scholar
    • Export Citation
  • [44]

    Sun, J., Chen, H., Nieto, J. J. and Otero-Novoa, M., The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonl. Anal. TMA, 72 (2010), 45754586.

    • Search Google Scholar
    • Export Citation
  • [45]

    Ricceri, B., A further three critical points theorem, Nonl. Anal. TMA, 71 (2009), 41514157.

  • [46]

    Ricceri, B., On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 46 (2010), 543549.

  • [47]

    Xie, J. and Luo, Z., Solutions to a boundary value problem of a fourth-order impulsive differential equation, Bound. Value Probl., 2013 (2013), 154.

    • Search Google Scholar
    • Export Citation
  • [48]

    Yang, B., Positive solutions for a fourth order boundary-value problem, Electron. J. Qual. Theory Differ. Equ., No. 3, (2005), pp. 117.

    • Search Google Scholar
    • Export Citation
  • [49]

    Zavalishchin, S. T. and Sesekin, A. N., Dynamic Impulse Systems: Theory and Applications, in: Mathematics and its Applications, vol. 394, Kluwer Academic Publishers Group, Dordrecht (1997).

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)