A space X is of countable type (resp. subcountable type) if every compact subspace F of X is contained in a compact subspace K that is of countable character (resp. countable pseudocharacter) in X. In this paper, we mainly show that: (1) For a functionally Hausdorff space X, the free paratopological group FP(X)and the free abelian paratopological group AP(X) are of countable type if and only if X is discrete; (2) For a functionally Hausdorff space X, if the free abelian paratopological group AP(X) is of subcountable type then X has countable pseudocharacter. Moreover, we also show that, for an arbitrary Hausdorff μ-space X, if AP2(X) or FP2(X) is locally compact, then X is a topological sum of a compact space and a discrete space.
A.V. Arhangel’skiĭ Classes of topological groups, Russian Math. Surveys, 36(3)(1981), 151–174. Russian original in: Uspekhi Mat. Nauk, 36 (1981), 127–146.
Arhangel’skiĭ, A.V., Reznichenko, E. A., Paratopological and semitopological groups versus topological groups, Topology Appl., 151 (2005), 107–119.
Arhangel’skiĭ, A. V., Tkachenko, M., Topological Groups and Related Structures, Atlantis Press and World Sci., Paris, 2008.
Birkhoff, G., A note on topological groups, Compositio Math., 3 (1936), 427–430.
Elfard, A. S. and Nickolas, P., On the topology of free paratopological groups, Bull. London Math. Soc., 44(6)(2012), 1103–1115.
Elfard, A. S. and Nickolas, P., On the topology of free paratopological groups. II, Topology Appl., 160 (2013), 220–229.
Engelking, R., General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
Gruenhage, G., Generalized metric spaces, Kunen, K. and Vaughan, J. E., eds., Handbook of Set-Theoretic Topology, North-Holland, (1984), 423–501.
Graev, M. I., Free topological groups, Izvestiya Akad. Nauk SSSR Ser. Mat., 12 (1948), 279–323.
Kakutani, S., Über die metrization der topologischen gruppen, Proc. Imperial Acad. Tokyo, 12 (1936), 82–84.
Lin, F. and Lin, S., Pseudobounded or w-pseudobounded paratopological groups, Filomat, 25(3)(2011), 93–103.
Lin, F., A note on free paratopological groups, Topology Appl., 159 (2012), 3596–3604.
Lin, F. and Liu, C., On paratopological groups, Topology Appl., 159 (2012), 2764–2773.
Lin, F., Topological monomorphism between free paratopological groups, Bulletin of the Belgian Mathematical Society-Simon Stevin, 19 (2012), 507–521.
Liu, C., A note on paratopological groups, Comment.Math.Univ.Carolin., 47 (2006), 633–640.
Liu, C., Metrizability of paratopological (semitopological) groups, Topology Appl., 159 (2012), 1415–1420.
Liu, C. and Lin, S., Generalized metric spaces with algebraic structures, Topology Appl., 157 (2010), 1966–1974.
Nickolas, P. and Tkachenko, M., Local compactness in free topological groups, Bull. Austral. Math. Soc., 68(2)(2003), 243–265.
Pontryagin, L. S., Continuous groups, third edition, “Nauka”, Moscow, 1973.
Pyrch, N. M. and Ravsky, A. V., On free paratopological groups, Matematychni Studii, 25 (2006), 115–125.
Ravsky, A., Paratopological groups I, Matematychni Studii, 16(1)(2001), 37–48.
Romaguera, S., Sanchis, M. and Tkackenko, M. G., Free paratopological groups, Topology Proceedings, 27 (2002), 1–28.
Roelke, W. and Dierolf, S. Uniform structures on topological groups and their quotients McGraw-Hill, New York, 1981.
Vaughan, J. E., Spaces of countable and point-countable type, Tran. Amer. Math. Soc., 151 (1970), 341–351.