View More View Less
  • 1 Guangdong Construction Polytechnic, Guangzhou 510440, China
  • 2 Hunan Agricultural University, Changsha 410128, China
  • 3 Hunan Agricultural University, Changsha 410128, China
  • 4 Jinan University, Zhuhai 519070, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

By making use of the critical point theory, we establish some new existence criteria to guarantee that a 2nth-order nonlinear difference equation containing both advance and retardation with p-Laplacian has a nontrivial homoclinic orbit. Our conditions on the potential are rather relaxed, and some existing results in the literature are improved.

  • [1]

    Ahlbrandt, C. D. and Peterson, A. C., The (n, n)-disconjugacy of a 2nth-order linear difference equation, Comput. Math. Appl., 28(1–3) (1994), 19.

    • Search Google Scholar
    • Export Citation
  • [2]

    AlSharawi, Z., Cushing, J. M. and Elaydi, S., Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer, New York (2014).

    • Search Google Scholar
    • Export Citation
  • [3]

    Cai, X. C. and Yu, J. S., Existence of periodic solutions for a 2nth-order nonlinear difference equation, J. Math. Anal. Appl., 329(2) (2007), 870878.

    • Search Google Scholar
    • Export Citation
  • [4]

    Casas, F. and Martinez, C., Advances in Differential Equations and Applications, Springer, New York (2014).

  • [5]

    Chen, P. and Fang, H., Existence of periodic and subharmonic solutions for secondorder p-Laplacian difference equations, Adv. Difference Equ., 2007 (2007), 19.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chen, P. and Tang, X. H., Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217(9) (2011), 44084415.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chen, P. and Tang, X. H., Existence and multiplicity of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 381(2) (2011), 485505.

    • Search Google Scholar
    • Export Citation
  • [8]

    Chen, P. and Tang, X. H., Infinitely many homoclinic solutions for the secondorder discrete p-Laplacian systems, Bull. Belg. Math. Soc., 20(2) (2013), 193212.

    • Search Google Scholar
    • Export Citation
  • [9]

    Chen, P. and Tang, X. H., Existence of homoclinic solutions for some secondorder discrete Hamiltonian systems, J. Difference Equ. Appl., 19(4) (2013), 633648.

    • Search Google Scholar
    • Export Citation
  • [10]

    Chen, P. and Wang, Z. M., Infinitely many homoclinic solutions for a class of nonlinear difference equations, Electron. J. Qual. Theory Differ. Equ., 47) (2012), 118.

    • Search Google Scholar
    • Export Citation
  • [11]

    Fang, H. and Zhao, D. P., Existence of nontrivial homoclinic orbits for fourthorder difference equations, Appl. Math. Comput., 214(1) (2009), 163170.

    • Search Google Scholar
    • Export Citation
  • [12]

    Guo, C. J., Agarwal, R. P., Wang, C. J. and O’Regan, D., The existence of homoclinic orbits for a class of first order superquadratic Hamiltonian systems, Mem. Differential Equations Math. Phys., 61 (2014), 83102.

    • Search Google Scholar
    • Export Citation
  • [13]

    Guo, C. J., O’Regan, D., Wang, C. J. and Agarwal, R. P., Existence of homoclinic orbits of superquadratic first-order Hamiltonian systems, Z. Anal. Anwend., 34(1) (2015), 2741.

    • Search Google Scholar
    • Export Citation
  • [14]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of homoclinic orbits of a class of second order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20 (2013), 675690.

    • Search Google Scholar
    • Export Citation
  • [15]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods, Appl. Math. Inform. Mech., 4(1) (2012), 115.

    • Search Google Scholar
    • Export Citation
  • [16]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of subharmonic solutions and homoclinic orbits for a class of high-order differential equations, Appl. Anal., 90(7) (2011), 11691183.

    • Search Google Scholar
    • Export Citation
  • [17]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of homoclinic orbits for a singular second-order neutral differential equation, J. Math. Anal. Appl., 366 (2011), 550560.

    • Search Google Scholar
    • Export Citation
  • [18]

    Guo, Z. M. and Yu, J. S., The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68(2) (2003), 419430.

    • Search Google Scholar
    • Export Citation
  • [19]

    He, X. F., Infinitely many homoclinic orbits for 2nth-order nonlinear functional difference equations involving the p-Laplacian, Abstr. Appl. Anal., 2012 (2012), 120.

    • Search Google Scholar
    • Export Citation
  • [20]

    Liu, Y., Infinitely many homoclinic solutions for nonperiodic fourth order differential equations with general potentials, Abstr. Appl. Anal., 2014 (2014), 17.

    • Search Google Scholar
    • Export Citation
  • [21]

    Long, Y. H., Homoclinic solutions of some second-order non-periodic discrete systems, Adv. Difference Equ., 2011 (2011), 112.

  • [22]

    Long, Y. H., Homoclinic orbits for a class of noncoercive discrete Hamiltonian systems, J. Appl. Math., 2012 (2012), 121.

  • [23]

    Ma, M. J. and Guo, Z. M., Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl., 323(1) (2006), 513521.

    • Search Google Scholar
    • Export Citation
  • [24]

    Ma, M. J. and Guo, Z. M., Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal., 67(6) (2007), 17371745.

    • Search Google Scholar
    • Export Citation
  • [25]

    Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, RI, New York (1986).

    • Search Google Scholar
    • Export Citation