View More View Less
  • 1 Guangdong Construction Polytechnic, Guangzhou 510440, China
  • | 2 Hunan Agricultural University, Changsha 410128, China
  • | 3 Hunan Agricultural University, Changsha 410128, China
  • | 4 Jinan University, Zhuhai 519070, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

By making use of the critical point theory, we establish some new existence criteria to guarantee that a 2nth-order nonlinear difference equation containing both advance and retardation with p-Laplacian has a nontrivial homoclinic orbit. Our conditions on the potential are rather relaxed, and some existing results in the literature are improved.

  • [1]

    Ahlbrandt, C. D. and Peterson, A. C., The (n, n)-disconjugacy of a 2nth-order linear difference equation, Comput. Math. Appl., 28(1–3) (1994), 19.

    • Search Google Scholar
    • Export Citation
  • [2]

    AlSharawi, Z., Cushing, J. M. and Elaydi, S., Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer, New York (2014).

    • Search Google Scholar
    • Export Citation
  • [3]

    Cai, X. C. and Yu, J. S., Existence of periodic solutions for a 2nth-order nonlinear difference equation, J. Math. Anal. Appl., 329(2) (2007), 870878.

    • Search Google Scholar
    • Export Citation
  • [4]

    Casas, F. and Martinez, C., Advances in Differential Equations and Applications, Springer, New York (2014).

  • [5]

    Chen, P. and Fang, H., Existence of periodic and subharmonic solutions for secondorder p-Laplacian difference equations, Adv. Difference Equ., 2007 (2007), 19.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chen, P. and Tang, X. H., Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217(9) (2011), 44084415.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chen, P. and Tang, X. H., Existence and multiplicity of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 381(2) (2011), 485505.

    • Search Google Scholar
    • Export Citation
  • [8]

    Chen, P. and Tang, X. H., Infinitely many homoclinic solutions for the secondorder discrete p-Laplacian systems, Bull. Belg. Math. Soc., 20(2) (2013), 193212.

    • Search Google Scholar
    • Export Citation
  • [9]

    Chen, P. and Tang, X. H., Existence of homoclinic solutions for some secondorder discrete Hamiltonian systems, J. Difference Equ. Appl., 19(4) (2013), 633648.

    • Search Google Scholar
    • Export Citation
  • [10]

    Chen, P. and Wang, Z. M., Infinitely many homoclinic solutions for a class of nonlinear difference equations, Electron. J. Qual. Theory Differ. Equ., 47) (2012), 118.

    • Search Google Scholar
    • Export Citation
  • [11]

    Fang, H. and Zhao, D. P., Existence of nontrivial homoclinic orbits for fourthorder difference equations, Appl. Math. Comput., 214(1) (2009), 163170.

    • Search Google Scholar
    • Export Citation
  • [12]

    Guo, C. J., Agarwal, R. P., Wang, C. J. and O’Regan, D., The existence of homoclinic orbits for a class of first order superquadratic Hamiltonian systems, Mem. Differential Equations Math. Phys., 61 (2014), 83102.

    • Search Google Scholar
    • Export Citation
  • [13]

    Guo, C. J., O’Regan, D., Wang, C. J. and Agarwal, R. P., Existence of homoclinic orbits of superquadratic first-order Hamiltonian systems, Z. Anal. Anwend., 34(1) (2015), 2741.

    • Search Google Scholar
    • Export Citation
  • [14]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of homoclinic orbits of a class of second order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20 (2013), 675690.

    • Search Google Scholar
    • Export Citation
  • [15]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods, Appl. Math. Inform. Mech., 4(1) (2012), 115.

    • Search Google Scholar
    • Export Citation
  • [16]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of subharmonic solutions and homoclinic orbits for a class of high-order differential equations, Appl. Anal., 90(7) (2011), 11691183.

    • Search Google Scholar
    • Export Citation
  • [17]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of homoclinic orbits for a singular second-order neutral differential equation, J. Math. Anal. Appl., 366 (2011), 550560.

    • Search Google Scholar
    • Export Citation
  • [18]

    Guo, Z. M. and Yu, J. S., The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68(2) (2003), 419430.

    • Search Google Scholar
    • Export Citation
  • [19]

    He, X. F., Infinitely many homoclinic orbits for 2nth-order nonlinear functional difference equations involving the p-Laplacian, Abstr. Appl. Anal., 2012 (2012), 120.

    • Search Google Scholar
    • Export Citation
  • [20]

    Liu, Y., Infinitely many homoclinic solutions for nonperiodic fourth order differential equations with general potentials, Abstr. Appl. Anal., 2014 (2014), 17.

    • Search Google Scholar
    • Export Citation
  • [21]

    Long, Y. H., Homoclinic solutions of some second-order non-periodic discrete systems, Adv. Difference Equ., 2011 (2011), 112.

  • [22]

    Long, Y. H., Homoclinic orbits for a class of noncoercive discrete Hamiltonian systems, J. Appl. Math., 2012 (2012), 121.

  • [23]

    Ma, M. J. and Guo, Z. M., Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl., 323(1) (2006), 513521.

    • Search Google Scholar
    • Export Citation
  • [24]

    Ma, M. J. and Guo, Z. M., Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal., 67(6) (2007), 17371745.

    • Search Google Scholar
    • Export Citation
  • [25]

    Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, RI, New York (1986).

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)