View More View Less
  • 1 Hirosaki University, Hirosaki 036–8561, Japan
  • 2 University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa
  • 3 Hirosaki University, Hirosaki 036–8561, Japan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let {Fn}n≥0 be the sequence of Fibonacci numbers. The aim of this paper is to give linear independence results over (5) for the infinite series n=1χj(n)/Fn with certain nonprincipal real Dirichlet characters χj. We also deduce the irrationality results for the special principal Dirichlet characters and for other multiplicative functions.

  • [1]

    Alford, W. R., Granville, A. and Pomerance, C., There are infinitely many Carmichael numbers, Ann. Math. 140 (1994), 703722.

  • [2]

    André-Jeannin, R., Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris 308 (1989), 539541.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bundschuh, P. and Väänänen, K., Arithmetical investigations of a certain infinite product, Compos. Math. 91 (1994), 175199.

  • [4]

    Chowla, S., On series of the Lambert type which assume irrational values for rational values of the argument, Proc. Nat. Inst. Sci. India 13 (1947), 171173.

    • Search Google Scholar
    • Export Citation
  • [5]

    Duverney, D., Nishioka, K., Nishioka, K. and Shiokawa, I., Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 140142.

    • Search Google Scholar
    • Export Citation
  • [6]

    Elsner, C., Shimomura, S., and Shiokawa, I., Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith. 130 (2007), 3760.

    • Search Google Scholar
    • Export Citation
  • [7]

    Elsner, C., Shimomura, S., and Shiokawa, I., Algebraic independence results for reciprocal sums of Fibonacci numbers, Acta Arith. 148 (2011), 205223.

    • Search Google Scholar
    • Export Citation
  • [8]

    Erdős, P., On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 6366.

  • [9]

    Kamano, K., Analytic continuation of the Lucas zeta and L-functions, Indag. Math. 24 (2013), 637646.

  • [10]

    Luca, F. and Tachiya, Y., Linear independence of certain Lambert series, Proc. Amer. Math. Soc. 142 (2014), 34113419.

  • [11]

    Luca, F. and Tachiya, Y., Irrationality of Lambert series associated with a periodic sequence, Int. J. Number Theory 10 (2014), 623636.

    • Search Google Scholar
    • Export Citation
  • [12]

    Matala-Aho, T. and Prévost, M., Irrationality measures for the series of reciprocals from recurrence sequences, J. Number Theory 96 (2002), 275292.

    • Search Google Scholar
    • Export Citation
  • [13]

    Matala-Aho, T. and Prévost, M., Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers, Ramanujan J. 11 (2006), 249261.

    • Search Google Scholar
    • Export Citation
  • [14]

    Navas, L., Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quart. 39 (2001), 409418.

  • [15]

    Nicolas, J. L. and Robin, G., Majorations explicites pour le nombre de diviseurs de N, Canad. Math. Bull. 26 (1983), 485492.

  • [16]

    Prévost, M., On the irrationality of ∑t n/Aa n+ n, J. Number Theory 73 (1998), 139161.

  • [17]

    Rosser, J. B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 6494.

  • [18]

    Tachiya, Y., Irrationality of certain Lambert series, Tokyo J. Math. 27 (2004), 7585.