View More View Less
  • 1 Hirosaki University, Hirosaki 036–8561, Japan
  • 2 University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa
  • 3 Hirosaki University, Hirosaki 036–8561, Japan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let {Fn}n≥0 be the sequence of Fibonacci numbers. The aim of this paper is to give linear independence results over (5) for the infinite series n=1χj(n)/Fn with certain nonprincipal real Dirichlet characters χj. We also deduce the irrationality results for the special principal Dirichlet characters and for other multiplicative functions.

  • [1]

    Alford, W. R., Granville, A. and Pomerance, C., There are infinitely many Carmichael numbers, Ann. Math. 140 (1994), 703722.

  • [2]

    André-Jeannin, R., Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris 308 (1989), 539541.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bundschuh, P. and Väänänen, K., Arithmetical investigations of a certain infinite product, Compos. Math. 91 (1994), 175199.

  • [4]

    Chowla, S., On series of the Lambert type which assume irrational values for rational values of the argument, Proc. Nat. Inst. Sci. India 13 (1947), 171173.

    • Search Google Scholar
    • Export Citation
  • [5]

    Duverney, D., Nishioka, K., Nishioka, K. and Shiokawa, I., Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 140142.

    • Search Google Scholar
    • Export Citation
  • [6]

    Elsner, C., Shimomura, S., and Shiokawa, I., Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith. 130 (2007), 3760.

    • Search Google Scholar
    • Export Citation
  • [7]

    Elsner, C., Shimomura, S., and Shiokawa, I., Algebraic independence results for reciprocal sums of Fibonacci numbers, Acta Arith. 148 (2011), 205223.

    • Search Google Scholar
    • Export Citation
  • [8]

    Erdős, P., On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 6366.

  • [9]

    Kamano, K., Analytic continuation of the Lucas zeta and L-functions, Indag. Math. 24 (2013), 637646.

  • [10]

    Luca, F. and Tachiya, Y., Linear independence of certain Lambert series, Proc. Amer. Math. Soc. 142 (2014), 34113419.

  • [11]

    Luca, F. and Tachiya, Y., Irrationality of Lambert series associated with a periodic sequence, Int. J. Number Theory 10 (2014), 623636.

    • Search Google Scholar
    • Export Citation
  • [12]

    Matala-Aho, T. and Prévost, M., Irrationality measures for the series of reciprocals from recurrence sequences, J. Number Theory 96 (2002), 275292.

    • Search Google Scholar
    • Export Citation
  • [13]

    Matala-Aho, T. and Prévost, M., Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers, Ramanujan J. 11 (2006), 249261.

    • Search Google Scholar
    • Export Citation
  • [14]

    Navas, L., Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quart. 39 (2001), 409418.

  • [15]

    Nicolas, J. L. and Robin, G., Majorations explicites pour le nombre de diviseurs de N, Canad. Math. Bull. 26 (1983), 485492.

  • [16]

    Prévost, M., On the irrationality of ∑t n/Aa n+ n, J. Number Theory 73 (1998), 139161.

  • [17]

    Rosser, J. B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 6494.

  • [18]

    Tachiya, Y., Irrationality of certain Lambert series, Tokyo J. Math. 27 (2004), 7585.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu