In this paper we study rings R with the property that every finitely generated ideal of R consisting entirely of zero divisors has a nonzero annihilator. The class of commutative rings with this property is quite large; for example, noetherian rings, rings whose prime ideals are maximal, the polynomial ring R[x] and rings whose classical ring of quotients are von Neumann regular. We continue to study conditions under which right mininjective rings, right FP-injective rings, right weakly continuous rings, right extending rings, one sided duo rings, semiregular rings and semiperfect rings have this property.
Alkan, M. and Özcan, A. C., Semiregular modules with respect to a fully invariant submodule, Comm. Algebra, 32 (2004), no. 11, 4285–4301.
Anderson, F. W. and Fuller, K. R., Rings and categories of module, Springer Verlag, 1998.
Armendariz, E. P. and Steinberg, S. T., Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc., 190 (1974), 417–425.
Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A., On ideals consisting entirely of zero divisors, Comm. Algebra, 28 (2000), 1061–1073.
Birkenmeier, G. F., Kim, J. Y. and Park, J. K., A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc., 122 (1994), 53–58.
Birkenmeier, G. F., Idempotents and completely semiprime ideals, Comm. Algebra, 11 (1983), 567–580.
Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R., Lifting Modules, Birkhäuser Verlag, 2006.
Henriksen, M. and Jerison, M., The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc., 115 (1965), 110–130.
Hinkle, G. and Huckaba, J. A., The generalized Kronecker function ring and the ring R(X), J. Reine Angew. Math., 292 (1977), 25–36.
Hong, C. Y., Jeon, Y., Kim, K. H., Kim, N. K. and Lee, Y., Weakly regular rings with ACC on annihilators and maximality of strongly prime ideals of weakly regular rings, J. Pure Appl. Algebra., 207 (2006), 565–574.
Hong, C. Y., Kim, N. K., Lee, Y. and Ryu, S. J., Rings with Property (A) and their extensions, J. Algebra., 315 (2007), 612–628.
Huckaba, J. A. and Keller, J. M., Annihilator of ideals in commutative rings, Pacific J. of Math., 83 (1979), 375–379.
Huckaba, J. A., Commutative rings with zero divisors, Marcel Dekker Inc., New York, 1988.
Hwang, S. U., Kim, N. K. and Lee, Y., On rings whose right annihilator are bounded, Glasgow Math. J., 51 (2009), 539–559.
Jain, S. K., Lopez-Permouth, S. R. and Tareq Rizvi, S., Continuous rings with ACC essentials are Artinian, Proc. Amer. Soc., 108 (1990), no. 3, 192–195.
Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970.
Kim, H. K., Kim, N. K., Jeong, M. S., Lee, Y., Ryu, S. J. and Yeo, D. E., On Codition provided by nilradical, J. Korean Math. Soc., 46 (2009), 1027–1040.
Lam, T. Y., A first course in noncommutative rings, Springer-Verlag New York, Inc., 1990.
Lam, T. Y., Lectures on Modules and Rings, Springer-Verlag New York, Inc., 1998.
Liu, Z. K., Armendariz rings relative to a monoid, Comm. Algebra., 33 (2005), 649–661.
Lucas, T. G., Two annihilator conditions: Property (A) and (a.c.), Comm. Algebra., 14 (1986), 557–580.
Mohamed, S. H. and Müller, B. J., Continuous and Discrete Modules, Cambridge University Press, 1990.
Mohammadi, R., Moussavi, A. and Zahiri M., On annihilations of ideals in skew monoid rings, J. Korean Math. Soc., 53(2) (2016), 381–401.
Nasr-Isfahani, A. R. and Moussavi, A., On a quotient of polynomial rings, Comm. Algebra, 38 (2010), 567–575.
Nicholson, W. K. and Yousif, M. F., Quasi-Frobenius Rings, Cambridge University Press, 2003.
Nielsen, P. P., Semi-commutativity and the McCoy condition, J. Algebra., 298 (2006), 134–141.
Quentel, Y., Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France, 99 (1971), 265–272.
Ziembowski, M., A note on zip rings, Acta Math. Hungar., 141 (2013), 127–131.
Tuganbaev, A., Semiregular, weakly regular, and π-regular rings, Journal of Mathematical Sciences., 109 (2002), no. 3, 43–60.