View More View Less
  • 1 Tarbiat Modares University, P.O.Box: 14115-134, Tehran, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper we study rings R with the property that every finitely generated ideal of R consisting entirely of zero divisors has a nonzero annihilator. The class of commutative rings with this property is quite large; for example, noetherian rings, rings whose prime ideals are maximal, the polynomial ring R[x] and rings whose classical ring of quotients are von Neumann regular. We continue to study conditions under which right mininjective rings, right FP-injective rings, right weakly continuous rings, right extending rings, one sided duo rings, semiregular rings and semiperfect rings have this property.

  • [1]

    Alkan, M. and Özcan, A. C., Semiregular modules with respect to a fully invariant submodule, Comm. Algebra, 32 (2004), no. 11, 42854301.

    • Search Google Scholar
    • Export Citation
  • [2]

    Anderson, F. W. and Fuller, K. R., Rings and categories of module, Springer Verlag, 1998.

  • [3]

    Armendariz, E. P. and Steinberg, S. T., Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc., 190 (1974), 417425.

    • Search Google Scholar
    • Export Citation
  • [4]

    Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A., On ideals consisting entirely of zero divisors, Comm. Algebra, 28 (2000), 10611073.

    • Search Google Scholar
    • Export Citation
  • [5]

    Birkenmeier, G. F., Kim, J. Y. and Park, J. K., A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc., 122 (1994), 5358.

    • Search Google Scholar
    • Export Citation
  • [6]

    Birkenmeier, G. F., Idempotents and completely semiprime ideals, Comm. Algebra, 11 (1983), 567580.

  • [7]

    Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R., Lifting Modules, Birkhäuser Verlag, 2006.

  • [8]

    Henriksen, M. and Jerison, M., The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc., 115 (1965), 110130.

    • Search Google Scholar
    • Export Citation
  • [9]

    Hinkle, G. and Huckaba, J. A., The generalized Kronecker function ring and the ring R(X), J. Reine Angew. Math., 292 (1977), 2536.

  • [10]

    Hong, C. Y., Jeon, Y., Kim, K. H., Kim, N. K. and Lee, Y., Weakly regular rings with ACC on annihilators and maximality of strongly prime ideals of weakly regular rings, J. Pure Appl. Algebra., 207 (2006), 565574.

    • Search Google Scholar
    • Export Citation
  • [11]

    Hong, C. Y., Kim, N. K., Lee, Y. and Ryu, S. J., Rings with Property (A) and their extensions, J. Algebra., 315 (2007), 612628.

  • [12]

    Huckaba, J. A. and Keller, J. M., Annihilator of ideals in commutative rings, Pacific J. of Math., 83 (1979), 375379.

  • [13]

    Huckaba, J. A., Commutative rings with zero divisors, Marcel Dekker Inc., New York, 1988.

  • [14]

    Hwang, S. U., Kim, N. K. and Lee, Y., On rings whose right annihilator are bounded, Glasgow Math. J., 51 (2009), 539559.

  • [15]

    Jain, S. K., Lopez-Permouth, S. R. and Tareq Rizvi, S., Continuous rings with ACC essentials are Artinian, Proc. Amer. Soc., 108 (1990), no. 3, 192195.

    • Search Google Scholar
    • Export Citation
  • [16]

    Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970.

  • [17]

    Kim, H. K., Kim, N. K., Jeong, M. S., Lee, Y., Ryu, S. J. and Yeo, D. E., On Codition provided by nilradical, J. Korean Math. Soc., 46 (2009), 10271040.

    • Search Google Scholar
    • Export Citation
  • [18]

    Lam, T. Y., A first course in noncommutative rings, Springer-Verlag New York, Inc., 1990.

  • [19]

    Lam, T. Y., Lectures on Modules and Rings, Springer-Verlag New York, Inc., 1998.

  • [20]

    Liu, Z. K., Armendariz rings relative to a monoid, Comm. Algebra., 33 (2005), 649661.

  • [21]

    Lucas, T. G., Two annihilator conditions: Property (A) and (a.c.), Comm. Algebra., 14 (1986), 557580.

  • [22]

    Mohamed, S. H. and Müller, B. J., Continuous and Discrete Modules, Cambridge University Press, 1990.

  • [23]

    Mohammadi, R., Moussavi, A. and Zahiri M., On annihilations of ideals in skew monoid rings, J. Korean Math. Soc., 53(2) (2016), 381401.

    • Search Google Scholar
    • Export Citation
  • [24]

    Nasr-Isfahani, A. R. and Moussavi, A., On a quotient of polynomial rings, Comm. Algebra, 38 (2010), 567575.

  • [25]

    Nicholson, W. K. and Yousif, M. F., Quasi-Frobenius Rings, Cambridge University Press, 2003.

  • [26]

    Nielsen, P. P., Semi-commutativity and the McCoy condition, J. Algebra., 298 (2006), 134141.

  • [27]

    Quentel, Y., Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France, 99 (1971), 265272.

  • [28]

    Ziembowski, M., A note on zip rings, Acta Math. Hungar., 141 (2013), 127131.

  • [29]

    Tuganbaev, A., Semiregular, weakly regular, and π-regular rings, Journal of Mathematical Sciences., 109 (2002), no. 3, 4360.