View More View Less
  • 1 Eötvös L. University, H-1117 Budapest, Pázmány P. sétány 1/C., Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A new concept of Walsh-Lebesgue points is introduced for higher dimensions and it is proved that almost every point is a modified Walsh-Lebesgue point of an integrable function. It is shown that the Walsh-Fejér means σnf of a function fL1[0, 1)d converge to f at each modified Walsh-Lebesgue point, whenever n→∞ and n is in a cone. The same is proved for other summability means, such as for the Weierstrass, Abel, Picard, Bessel, Cesàro, de La Vallée-Poussin, Rogosinski and Riesz summations.

  • [1]

    Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximation. Birkhäuser Verlag, Basel, 1971.

  • [2]

    Feichtinger H. G. and Weisz, F., The Segal algebra S0(Rd) and norm summability of Fourier series and Fourier transforms. Monatsh. Math., 148:333349, 2006.

    • Search Google Scholar
    • Export Citation
  • [3]

    Feichtinger H. G. and Weisz, F., Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Cambridge Philos. Soc., 140:509536, 2006.

    • Search Google Scholar
    • Export Citation
  • [4]

    Fejér, L., Untersuchungen über Fouriersche Reihen. Math. Ann., 58:5169, 1904.

  • [5]

    Fine, N. J., Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. USA, 41:558591, 1955.

  • [6]

    Gát, G., Pointwise convergence of the Cesàro means of double Walsh series. Ann. Univ. Sci. Budapest Sect. Comp., 16:173184, 1996.

  • [7]

    Gát, G., On the divergence of the (C, 1) means of double Walsh-Fourier series. Proc. Amer. Math. Soc., 128:17111720, 2000.

  • [8]

    Gát, G., Divergence of the (C, 1) means of d-dimensional Walsh-Fourier series. Anal. Math., 27:157171, 2001.

  • [9]

    Gát, G., Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series. J. Approx. Theory., 149:74102, 2007.

    • Search Google Scholar
    • Export Citation
  • [10]

    Gát, G., Goginava, U. and Nagy, K., On the Marcinkiewicz-Fejér means of double Fourier series with respect to Walsh-Kaczmarz system. Studia Sci. Math. Hungar., 46:399421, 2009.

    • Search Google Scholar
    • Export Citation
  • [11]

    Goginava, U., Marcinkiewicz-Fejér means of d-dimensional Walsh-Fourier series. J. Math. Anal. Appl., 307:206218, 2005.

  • [12]

    Goginava, U., Almost everywhere convergence of (C, a)-means of cubical partial sums of d-dimensional Walsh-Fourier series. J. Approx. Theory, 141:828, 2006.

    • Search Google Scholar
    • Export Citation
  • [13]

    Goginava, U., The maximal operator of the Marcinkiewicz-Fejér means of ddimensional Walsh-Fourier series. East J. Approx., 12:295302, 2006.

    • Search Google Scholar
    • Export Citation
  • [14]

    Lebesgue, H., Recherches sur la convergence des séries de Fourier. Math. Ann., 61:251280, 1905.

  • [15]

    Marcinkiewicz, J. and Zygmund, A., On the summability of double Fourier series. Fund. Math., 32:122132, 1939.

  • [16]

    Marcinkiewicz, J. and Zygmund, A., On the summability of double Fourier series. Fund. Math., 32:122132, 1939.

  • [17]

    Schipp, F., Über gewissen Maximaloperatoren. Ann. Univ. Sci. Budapest Sect. Math., 18:189195, 1975.

  • [18]

    Schipp, F., Wade, W. R., Simon, P. and Pál, P., Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York, 1990.

    • Search Google Scholar
    • Export Citation
  • [19]

    Simon, P., Cesàro summability with respect to two-parameter Walsh systems. Monatsh. Math., 131:321334, 2000.

  • [20]

    Simon, P., (C,a) summability of Walsh-Kaczmarz-Fourier series. J. Approx. Theory, 127:3960, 2004.

  • [21]

    Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton, N.J., 1971.

  • [22]

    Trigub, R. M. and Belinsky, E. S., Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.

    • Search Google Scholar
    • Export Citation
  • [23]

    Weisz, F., Convergence of singular integrals. Ann. Univ. Sci. Budapest. Sect. Math., 32:243256, 1989.

  • [24]

    Weisz, F., Cesàro summability of two-dimensional Walsh-Fourier series. Trans. Amer. Math. Soc., 348:21692181, 1996.

  • [25]

    Weisz, F., Summability of Multi-dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

    • Search Google Scholar
    • Export Citation
  • [26]

    Weisz, F., Walsh-Lebesgue points of multi-dimensional functions. Anal. Math., 34:307324, 2008.

  • [27]

    Weisz, F., Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory, 7:1179, 2012.

  • [28]

    Zygmund, A., Trigonometric Series. Cambridge Press, London, 3rd edition, 2002.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu