View More View Less
  • 1 Persian Gulf University, Bushehr, Iran
  • | 2 Yazd University, Yazd, Iran
  • | 3 Rider University Lawrenceville, New Jersey 08648, U.S.A.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The Rayleigh distribution is an important model in applications such as noise theory, height of the sea waves and wave length. In this paper, we first study the reliability characteristics of Morgenstern type bivariate Rayleigh distribution (MTBRD). Then, we investigate some properties on concomitants of order statistics and record values in MTBRD. Finally, we propose the best linear unbiased estimator for a parameter of MTBRD using both complete and censored samples based on concomitants of order statistics.

  • [1]

    Ahsanullah, M., Record statistics, Nova Science Publishers Commack, New York, 1995.

  • [2]

    Anderson, J. E., Louis, T. A., Holm, N. V. and Harvald, B., Time-dependent association measures for bivariate survival distributions, Journal of the American Statistical Association, 87(419) (1992) pp. 641650.

    • Search Google Scholar
    • Export Citation
  • [3]

    Arnold, B., Balakrishnan, N. and Nagaraja, H., Records, John Wiley & Sons Inc, New York, 1998.

  • [4]

    Bairamov, I. and Bekci, M., Concomitant of order statistics in FGM type bivariate uniform distributions, Istatistik, Journal of the Turkish Statistical Association, 2(2) (1999) pp. 135144.

    • Search Google Scholar
    • Export Citation
  • [5]

    Balasubramanian, K. and Beg, M. I., Concomitants of order statistics in Morgenstern type bivariate exponential distribution, Journal of Applied Statistical Science, 54(4) (1997) pp. 233245.

    • Search Google Scholar
    • Export Citation
  • [6]

    BuHamra, S. and Ahsanullah, M., On concomitants of bivariate Farlie-Gumbel- Morgenstern distributions, Pakistan Journal of Statistics, 29(4) (2013) pp. 453466.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chacko, M. and Thomas, P. Y., Estimation of a parameter of Morgenstern type bivariate exponential distribution by ranked set sampling, Annals of the Institute of Statistical Mathematics, 60(2) (2008) pp. 301318.

    • Search Google Scholar
    • Export Citation
  • [8]

    Chacko, M. and Thomas, P. Y., Estimation of parameter of Morgenstern type bivariate exponential distribution using concomitants of order statistics, Statistical Methodology, 8(4) (2011) pp. 363376.

    • Search Google Scholar
    • Export Citation
  • [9]

    Clayton, D. G., A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65(1) (1978) pp. 141151.

    • Search Google Scholar
    • Export Citation
  • [10]

    David, H. A. and Nagaraja, H., Order Statistics, John Wiley and Sons, 2003.

  • [11]

    D’Este, G., A Morgenstern-type bivariate gamma distribution, Biometrika, 68(1) (1981) pp. 339340.

  • [12]

    Gumbel, E. J., Bivariate exponential distributions, Journal of the American Statistical Association, 55(292) (1960) pp. 698707.

  • [13]

    Gumbel, E. J., Bivariate logistic distributions, Journal of the American Statistical Association, 56(294) (1961) pp. 335349.

  • [14]

    Gupta, R. C., Reliability characteristics of Farlie-Gumbel-Morgenstern family of bivariate distributions, Communications in Statistics-Theory and Methods, (2015) 10.1080/03610926. 2013.828075.

    • Search Google Scholar
    • Export Citation
  • [15]

    Houchens, R. L., Record value theory and inference, Dissertation Abstracts International Part B: Science and Engineering, 45(3) (1984).

    • Search Google Scholar
    • Export Citation
  • [16]

    Khaledi, B.-E. and Kochar, S., Stochastic comparisons and dependence among concomitants of order statistics, Journal of Multivariate Analysis, 73(2) (2000) pp. 262281.

    • Search Google Scholar
    • Export Citation
  • [17]

    Khames, S. and Mokhlis, N., Concomitants of record values from a general Farlie- Gumbel-Morgenstern distribution, Journal of Advances in Mathematics, 7(3) (2014) pp. 13171329.

    • Search Google Scholar
    • Export Citation
  • [18]

    Morgenstern, D., Einfache beispiele zweidimensionaler verteilungen, Mitteilingsblatt für Mathematishe Statistik, 8(1) (1956) pp. 234235.

    • Search Google Scholar
    • Export Citation
  • [19]

    Nevzorov, V. B. and Ahsanullah, M., Some distributions of induced records, Biometrical Journal, 42(8) (2000) pp. 10691081.

  • [20]

    Scaria, J. and Nair, N. U., On concomitants of order statistics from Morgenstern family, Biometrical Journal, 41(4) (1999) pp. 483489.

    • Search Google Scholar
    • Export Citation
  • [21]

    Shaked, M., A family of concepts of dependence for bivariate distributions, Journal of the American Statistical Association, 72(359) (1977) pp. 642650.

    • Search Google Scholar
    • Export Citation
  • [22]

    Shaked, M. and Shanthikumar, J. G., Stochastic Orders and Their Applications, Academic Press, San Diego, 1994.

  • [23]

    Tahmasebi, S. and Behboodian, J., A short note on entropy ordering property for concomitants of order statistics, World Applied Sciences Journal, 9(3) (2010) pp. 257258.

    • Search Google Scholar
    • Export Citation
  • [24]

    Tahmasebi, S. and Behboodian, J., Information properties for concomitants of order statistics in Farlie - Gumbel-Morgenstern (FGM) family, Communications in Statistics - Theory and Methods, 41(11) (2012) pp. 19541968.

    • Search Google Scholar
    • Export Citation
  • [25]

    Tahmasebi, S. and Jafari, A. A., Estimation of a scale parameter of Morgenstern type bivariate uniform distribution by ranked set sampling, Journal of Data Science, 10 (2012) pp. 129141.

    • Search Google Scholar
    • Export Citation
  • [26]

    Tahmasebi, S. and Jafari, A. A., Estimators for the parameter mean of Morgenstern type bivariate generalized exponential distribution using ranked set sampling, Statistics and Operations Research Transactions, 38(2) (2014) pp. 161180.

    • Search Google Scholar
    • Export Citation
  • [27]

    Tahmasebi, S. and Jafari, A. A., Concomitants of order statistics and record values from Morgenstern type bivariate generalized exponential distribution, Bulletin of the Malaysian Mathematical Sciences Society, 38(4) (2015) pp. 14111423.

    • Search Google Scholar
    • Export Citation
  • [28]

    Tahmasebi, S. and Jafari, A. A., A review on unbiased estimators of a parameter from morgenstern type bivariate gamma distribution using ranked set sampling, Azerbaijan Journal of Mathematics, 5(2) (2015) pp. 312.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)