View More View Less
  • 1 University of North Carolina, Wilmington, USA 601S College Road, Wilmington, NC 28403, USA
  • | 2 University of Manchester, 2.223 Alan Turing Building, Oxford Road, Manchester M13 9PL, United Kingdom
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Consider a two-dimensional discrete random variable (X, Y) with possible values 1, 2, . . . , I for X and 1, 2, . . . , J for Y. For specifying the distribution of (X, Y), suppose both conditional distributions of X given Y and Y given X are specified. In this paper, we address the problem of determining whether a given set of constraints involving marginal and conditional probabilities and expectations of functions are compatible or most nearly compatible. To this end, we incorporate all those information with the Kullback-Leibler (K-L) divergence and power divergence statistics to obtain the most nearly compatible probability distribution when the two conditionals are not compatible, under the discrete set up. Finally, a comparative study is carried out between the K-L divergence and power divergence statistics for some illustrative examples.

  • [1]

    Adhikari, B.P. and Joshi, D.D., Distance, discrimination et résumé exhaustif, Publications de l’Institut de Statistique de l’Université de Paris, 5,(1956) pp. 5774.

    • Search Google Scholar
    • Export Citation
  • [2]

    Alin, A., A note on penalized power-divergence test statistics, World Academy of Science, Engineering and Technology, 27 (2007) 6065.

    • Search Google Scholar
    • Export Citation
  • [3]

    Arnold, B.C., Characterizations involving conditional specification, Journal of Statistical Planning and Inference, 63 (1997) 117131.

    • Search Google Scholar
    • Export Citation
  • [4]

    Arnold, B.C., Castillo, E. and Sarabia, J.M., Specification of distributions by combinations of marginal and conditional distributions, Statistics and Probability Letters, 26 (1996) 153157.

    • Search Google Scholar
    • Export Citation
  • [5]

    Arnold, B.C., Castillo, E. and Sarabia, J.M., Conditional Specification of Statistical Models. Springer Verlag, New York, (1999).

  • [6]

    Arnold, B.C., Castillo, E. and Sarabia, J.M., Quantification of incompatibility of conditional and marginal information, Communications in Statistics: Theory and Methods, 30 (2001) 381395.

    • Search Google Scholar
    • Export Citation
  • [7]

    Arnold, B.C., Castillo, E. and Sarabia, J.M., Exact and near compatibility of discrete conditional distributions, Computational Statistics and Data Analysis, 40 (2002) 231252.

    • Search Google Scholar
    • Export Citation
  • [8]

    Arnold, B.C., Castillo, E. and Sarabia, J.M., Compatibility of partial or complete conditional probability specifications, Journal of Statistical Planning and Inference, 123 (2004) 133159.

    • Search Google Scholar
    • Export Citation
  • [9]

    Arnold, B.C. and Gokhale, D.V., On uniform marginal representations of contingency tables, Statistics and Probability Letters, 21 (1994) 311316.

    • Search Google Scholar
    • Export Citation
  • [10]

    Arnold, B.C. and Gokhale, D.V., Distributions most nearly compatible with given families of conditional distributions, The finite discrete case. Test, 7 (1998) 377390.

    • Search Google Scholar
    • Export Citation
  • [11]

    Arnold, B.C. and Gokhale, D.V., Most nearly compatible distributions in given parametric families with given conditional information, Technical Report No. 261, Department of Statistics, University of California, Riverside, California, (1999).

    • Search Google Scholar
    • Export Citation
  • [12]

    Arnold, B.C. and Press, S.J., Compatible conditional distributions, Journal of the American Statistical Association, 84 (1989) 152156.

    • Search Google Scholar
    • Export Citation
  • [13]

    Cacoullos, T. and Papageorgiou, H., Characterizations of discrete distributions by a conditional distribution and a regression function, Annals of the Institute of Statistical Mathematics, 35 (1995) 95103.

    • Search Google Scholar
    • Export Citation
  • [14]

    Chandrasekhar, V., Takacs, G., Chen, D.M., Tsai, S.S., Reznik, Y., Grzeszczuk, R. and Girod, B., Compressed histogram of gradients: A lowbitrate descriptor, International Journal of Computer Vision, 96 (2012) 384399.

    • Search Google Scholar
    • Export Citation
  • [15]

    Chernoff, H., A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations, Annals of Mathematical Statistics, 23 (1952) 493507.

    • Search Google Scholar
    • Export Citation
  • [16]

    Dawid, A.P., Conditional independence in statistical theory, Journal of the Royal Statistical Society, B, 41 (1979) 131.

  • [17]

    Dawid, A.P., Conditional independence for statistical operations, Annals of Statistics, 8 (1980) 598617.

  • [18]

    Hegde, A., Erdogmus, D., Lehn-Schioler, T., Rao, Y.N. and Principe, J.C., Vector-quantization by density matching in the minimum Kullback-Leibler divergence sense, In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, 109 (2004).

    • Search Google Scholar
    • Export Citation
  • [19]

    Gelman, A. and Speed, T.P., Characterizing a joint probability distribution by conditionals, Journal of the Royal Statistical Society, B, 55 (1993) 185188.

    • Search Google Scholar
    • Export Citation
  • [20]

    Gelman, A. and Speed, T.P., Corrigendum: Characterizing a joint probability distribution by conditionals, Journal of the Royal Statistical Society, B, 61 (1999) 483.

    • Search Google Scholar
    • Export Citation
  • [21]

    Ghosh, I. and Balakrishnan, N., Study of incompatibility or near compatibility of bivariate discrete conditional probability distributions through divergence measures, Journal of Statistical Computation and Simulation, 85 (2015) 117130.

    • Search Google Scholar
    • Export Citation
  • [22]

    Imseng, D., Bourlard, H. and Garner, P.N., Using KL-divergence and multilingual information to improve ASR for under-resourced languages, In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, (2012) 48694872.

    • Search Google Scholar
    • Export Citation
  • [23]

    Ip, E.H. and Wang, Y.J., Canonical representation of conditionally specified multivariate discrete distributions, Journal of Multivariate Analysis, 100 (2009) 12821290.

    • Search Google Scholar
    • Export Citation
  • [24]

    Kolmogorov, A.N., On tables of random numbers, Sankhya, 25 (1963) 369376.

  • [25]

    Kullback, S., Information Theory and Statistics, Wiley, New York, (1959).

  • [26]

    Kuo, K.L. and Wang, Y.J., A simple algorithm for checking compatibility among discrete conditional distributions, Computational Statistics and Data Analysis, 55 (2011) 24572462.

    • Search Google Scholar
    • Export Citation
  • [27]

    Mahalanobis, P.C., On the generalised distance in statistics, Proceedings of the National Institute of Sciences of India, 2 (1936) 4955.

    • Search Google Scholar
    • Export Citation
  • [28]

    Mathiassen, J.R., Skavhaug, A. and Bo, K., Texture similarity measure using Kullback-Leibler divergence between gamma distributions, In: Proceedings of the ECCV 2002, editors Heyden et al., (2002) 133147.

    • Search Google Scholar
    • Export Citation
  • [29]

    Mosteller, F., Association and estimation in contingency tables, Journal of the American Statistical Association, 63 (1968) 128.

  • [30]

    Pak, R.J., A robust estimation for the composite lognormal-Pareto model, Communications for Statistical Applications and Methods, 20 (2013) 311320.

    • Search Google Scholar
    • Export Citation
  • [31]

    Rao, C.R., On the distance between two populations, Sankhya, 9 (1949) 246248.

  • [32]

    Rao, C.R., On the use and interpretation of distance function in statistics, Bulletin of the Institute of International Statistics, 34 (1954) 90100.

    • Search Google Scholar
    • Export Citation
  • [33]

    Rényi, A., On measures of information and entropy, In: Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, (1961) 547561.

    • Search Google Scholar
    • Export Citation
  • [34]

    Shannon, C.E., Prediction and entropy of printed English, Bell System Technical Journal, 30 (1951) 5064.

  • [35]

    Song, C.C., Li, L.A. and Chen, C.H., (2010). Compatibility of finite discrete conditional distributions, Statistica Sinica, 20, 423440.

    • Search Google Scholar
    • Export Citation
  • [36]

    Tan, M., Tian, G.L. and Ng, K.W., Bayesian Missing Data Problems: EM, Data Augmentation and Non-iterative Computation, Chapman and Hall/CRC, Boca Raton, USA, (2010).

    • Search Google Scholar
    • Export Citation
  • [37]

    Tian, G.L., Tan, M., Ng, K.W. and Tang, M.L., A unified method for checking compatibility and uniqueness for finite discrete conditional distributions, Communication in Statistics: Theory and Methods, 38 (2009) 115129.

    • Search Google Scholar
    • Export Citation
  • [38]

    Wang, Y.J., Comparisons of three approaches for discrete conditional models, Communications in Statistics: Simulation and Computation, 41 (2012) 3243.

    • Search Google Scholar
    • Export Citation
  • [39]

    Wang, Y.J. and Kuo, K.L., Compatibility of discrete conditional distributions with structural zeros, Journal of Multivariate Analysis, 101 (2010) 191199.

    • Search Google Scholar
    • Export Citation
  • [40]

    Wesolowski, J., Bivariate distributions via a Pareto conditional distribution and a regression function, Annals of the Institute of Statistical Mathematics, 47 (1995) 177183.

    • Search Google Scholar
    • Export Citation
  • [41]

    Yao, Y.-C., Chen, S.-C. and Wang, S.-H., On compatibility of discrete full conditional distributions: A graphical representation approach, Journal of Multivariate Analysis, 124 (2014) 19.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)