View More View Less
  • 1 Shahrekord University, P.O. Box 115, Shahrekord, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we get integral representations for the quintic Airy functions as the four linearly independent solutions of differential equation y(4) + xy = 0. Also, new integral representations for the products of these functions are obtained in terms of the Bessel functions and the Riesz fractional derivatives of these products are given.

  • [1]

    Accetta, G. and Orsingher, E., Asymptotic expansion of fundamental solutions of higher order heat equations, Random Operators and Stochastic Equations, 5(3) (1997) pp. 217225.

    • Search Google Scholar
    • Export Citation
  • [2]

    Ansari, A. and Askari, H., On fractional calculus of A2n+1(x) function, Applied Mathematics and Computation, 232 (2014), 487497.

  • [3]

    Ansari, A., Ahamadi Darani M. and Moradi, M., On fractional Mittag-Leffler operators, Reports on Mathematical Physics, 70(1) (2012) 119131.

    • Search Google Scholar
    • Export Citation
  • [4]

    Ansari, A., Refahi Sheikhani, A. and Saberi Najafi, H., Solution to system of partial fractional differential equation using the fractional exponential operators, Mathematical Methods in the Applied Sciences, 35 (2012) 119123.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ansari, A., Fractional exponential operators and time-fractional telegraph equation, Boundary Value Problems, 125 (2012).

  • [6]

    Ansari, A., Refahi Sheikhani, A. and Kordrostami, S., On the generating function ext+yΦ(t) and its fractional calculus, Central European Journal of Physics, 11(10) (2013) 14571462.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ansari, A. and Ahamadi Darani, M., On the generalized mass transfer with a chemical reaction: fractional derivative model, Iranian Journal of Mathematical Chemistry, 7(1) (2016) 7788.

    • Search Google Scholar
    • Export Citation
  • [8]

    Beghina, L., Orsinghera, E. and Ragozina, T., Joint distributions of the maximum and the process for higher-order diffusions, Stochastic Processes and their Applications, 94 (2001) 71Ű93.

    • Search Google Scholar
    • Export Citation
  • [9]

    Cahoy, D. O., Estimation and Simulation for the M-Wright Function, Communications in Statistics-Theory and Methods, 41 (2012) 14661477.

    • Search Google Scholar
    • Export Citation
  • [10]

    Durugo, S. O., Higher-order airy functions of the first kind and spectral properties of the massless relativistic quartic anharmonic oscillator, Doctoral Thesis, Loughborough University, Oct. 2014.

    • Search Google Scholar
    • Export Citation
  • [11]

    Debnath, L. and Bhatta, D., Integral Transforms and Their Applications, second ed., Chapman and Hall, New York, 2006.

  • [12]

    Górska, K., Horzela, A., Penson, K. A. and Dattoli, G., The higher-order heat-type equations via signed Lévy stable and generalized Airy functions, Journal of Physics A: Mathematical and Theoretical, 46 (2013) 16 pages.

    • Search Google Scholar
    • Export Citation
  • [13]

    Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series and Products, Seventh Edition, New York, Academic Press, 2007.

  • [14]

    Haimo, D.T., Markett, C., A representation theory for solutions of a higherorder heat equation. I, Journal of Mathematical Analysis and Applications, 168 (1992) 89107.

    • Search Google Scholar
    • Export Citation
  • [15]

    Haimo, D.T., and Markett C., A representation theory for solutions of a higherorder heat equation. II, Journal of Mathematical Analysis and Applications, 168 (1992) 289305.

    • Search Google Scholar
    • Export Citation
  • [16]

    Hochberg, K.J., A signed measure on path space related to Wiener measure, Annals of Probability, 6 (1978) 433458.

  • [17]

    Hochberg, K.J. and Orsingher, E., The arc-sine law and its analogs for processes governed by signed and complex measures, Stochastic Processes and their Applications, 52(2) (1994) 273292.

    • Search Google Scholar
    • Export Citation
  • [18]

    Krylov, V. Yu., Some properties of the distribution corresponding to the equation ∂u/∂t = (−1)q+1 ∂u2q/∂x2q, Soviet Mathematics Doklady, 1 (1960) 760763.

    • Search Google Scholar
    • Export Citation
  • [19]

    Lachal, A., A survey on the pseudo-process driven by the high-order heat-type equation ∂/∂t = ± N/∂xN concerning the hitting and sojourn times, Methodology and Computing in Applied Probability, 14(3) (2012) 549566.

    • Search Google Scholar
    • Export Citation
  • [20]

    Mainardi, F., Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010.

  • [21]

    Nikitin, Y. and Orsingher, E., On sojourn distributions of processes related to some higher-order heat-type equations, Journal of Theoretical Probability, 13 (2000) 9971012.

    • Search Google Scholar
    • Export Citation
  • [22]

    Orsingher, E., and D’Ovidio, M., Probabilistic representation of fundamental solutions to ∂u/∂t = km ∂mu/∂xm, Electronic Communications in Probability, 17 (2012) 112.

    • Search Google Scholar
    • Export Citation
  • [23]

    Orsingher, E., Processes governed by signed measures connected with third order heat-type equations, Lithuanian Mathematical Journal, 31(2) (1991) 220231.

    • Search Google Scholar
    • Export Citation
  • [24]

    Orsingher, E. and Toaldo, B., Pseudoprocesses related to space-fractional higherorder heat-type equations, Stochastic Analysis and Applications, 32(4) (2014) 619641.

    • Search Google Scholar
    • Export Citation
  • [25]

    Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

  • [26]

    Temme, N. M., and Varlamov, V., Asymptotic expansions for Riesz fractional derivatives of Airy functions and applications, Journal of Computational and Applied Mathematics, 232 (2009) 201215.

    • Search Google Scholar
    • Export Citation
  • [27]

    Vallee, O. and Soares, M., Airy Functions and Applications to Physics, Imperial College Press, London, 2004.

  • [28]

    Varlamov, V., Semi-integer derivatives of the Airy functions and related properties of the Korteweg-de Vries-type equations, Zeitschrift für angewandte Mathematik und Physik, 59 (2008) 381399.

    • Search Google Scholar
    • Export Citation
  • [29]

    Varlamov, V., Fractional derivatives of products of Airy functions, Journal of Mathematical Analysis and Applications, 337 (2008) 667685.

    • Search Google Scholar
    • Export Citation
  • [30]

    Varlamov, V., Riesz fractional derivatives of the product of Airy transforms, Physica Scripta, T136 (2009) 014004 (5pp).

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)