View More View Less
  • 1 COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
  • 2 Aurel Vlaicu University of Arad, BD. Revolutiei, No. 77, 310130-Arad, Romania
  • 3 Government College University, Faisalabad, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The aim of this paper is to obtain some new bounds having Riemann type quantum integrals within the class of strongly convex functions. The results obtained are sharp on limit q → 1. These new results reduce to Tariboon-Ntouyas, Merentes-Nikodem and other previously known results when q → 1, where 0 < q < 1. The sharpness of the results of Tariboon-Ntouyas and Merentes-Nikodem is proved as a consequence.

  • [1]

    Angulo, H., Giménez, J., Moros, A. M. and Nikodem, K., On strongly h-convex functions, Ann. Funct. Anal., 2(2)(2011), 8591.

  • [2]

    Azócar, A., Giménez, J., Nikodem, K. and Sánchez, J. L., On strongly midconvex functions, Opuscula Math., 31(1)(2011), 1526.

  • [3]

    Cristescu, G., and Lupsa, L., Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, (2002).

  • [4]

    Cristescu, G., Improved Integral Inequalities for Products of Convex Functions, Journal of Inequalities in Pure and Applied Mathematics, 6(2)(2005), [On line: http://www.emis.de/journals/JIPAM/article504.html?sid=504]

    • Search Google Scholar
    • Export Citation
  • [5]

    Dragomir, S. S. and Pearce, C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University Australia, 2000.

    • Search Google Scholar
    • Export Citation
  • [6]

    Dragomir, S. S. and Rassias, T. M., Ostrowski Type Inequalities and Applications in Numerical Integration, Springer Netherlands, 2002.

  • [7]

    Ernst, T., A Comprehensive Treatment of q-Calculus, Springer Basel Heidelberg New York Dordrecht London, 2012.

  • [8]

    Ernst, T., A Method for q-Calculus, J. Nonl. Math. Phy., 10(4)(2003), 487525.

  • [9]

    Gauchman, H., Integral inequalities in q-calculus. Comput. Math. Appl., 47(2004), 281300.

  • [10]

    Hiriart-Urruty, J. B. and Lemaréchal, C., Fundamentals of convex analysis, Springer-Verlag, Berlin Heidelberg, 2001.

  • [11]

    Jackson, F. H., On a q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910), 193203.

  • [12]

    Kak, V. and Cheung, P., Quantum Calculus, Springer Verlag, 2002.

  • [13]

    Merentes, N. and Nikodem, K., Remarks on strongly convex functions, Aequationes Math., 80(1-2)(2010), 193199.

  • [14]

    Nikodem, K. and Páles, Z., Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 5(1)(2011), 8387.

    • Search Google Scholar
    • Export Citation
  • [15]

    Noor, M. A., Noor, K. I. and Awan, M. U., Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251(2015), 675679.

    • Search Google Scholar
    • Export Citation
  • [16]

    Noor, M. A., Noor, K. I. and Awan, M. U., Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269(2015), 242251.

    • Search Google Scholar
    • Export Citation
  • [17]

    Noor, M. A., Awan, M. U. and Noor, K. I., Some new q-estimates for certain integral inequalities, Fact universities series: Mathematics and Informatics, to appear.

    • Search Google Scholar
    • Export Citation
  • [18]

    Noor, M. A., Noor, K. I. and Awan, M. U., Quantum Ostrowski inequalities for q-differentiable convex functions, J. Math. Inequal., to appear.

    • Search Google Scholar
    • Export Citation
  • [19]

    Pachpatte, B. G., Analytic inequalities: Recent Advances, Atlantic Press, Amsterdam-Paris. 2012.

  • [20]

    Pearce, C. E. M. and Pečarić, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2000), 5155.

    • Search Google Scholar
    • Export Citation
  • [21]

    Pečarić, J. E., Proschan, F. and Tong, Y. L., Convex functions, partial orderings and statistical applications, Academic Press, New York, 1992.

    • Search Google Scholar
    • Export Citation
  • [22]

    Polyak, B.T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet. Math. Dokl., 7(1966), 7275.

    • Search Google Scholar
    • Export Citation
  • [23]

    Rajba, T., On strong delta-convexity and Hermite-Hadamard type inequalities for delta-convex functions of higher order, Math. Inequal. Appl., 18(1)(2015), 267293.

    • Search Google Scholar
    • Export Citation
  • [24]

    Rajba, T. and Wasowicz, Sz., Probabilistic characterization of strong convexity, Opuscula Math., 31(1)(2011), 97103.

  • [25]

    Sudsutad, W., Ntouyas, S. K. and Tariboon, J., Quantum integral inequalities for convex functions, J. Math. Inequal., 9(3)(2015), 781793.

    • Search Google Scholar
    • Export Citation
  • [26]

    Taf, S., Brahim, K. and Riahi, L., Some results for Hadamard-type inequalities in quantum calculus, Le Mathematiche, LXIX, 2(2014), 243258.

    • Search Google Scholar
    • Export Citation
  • [27]

    Tariboon, J. and Ntouyas, S. K., Quantum integral inequalities on finite intervals, J. Inequal. App., 121(2014).

  • [28]

    Tariboon, J. and Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ., 282(2013).

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu