View More View Less
  • 1 COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
  • | 2 Aurel Vlaicu University of Arad, BD. Revolutiei, No. 77, 310130-Arad, Romania
  • | 3 Government College University, Faisalabad, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The aim of this paper is to obtain some new bounds having Riemann type quantum integrals within the class of strongly convex functions. The results obtained are sharp on limit q → 1. These new results reduce to Tariboon-Ntouyas, Merentes-Nikodem and other previously known results when q → 1, where 0 < q < 1. The sharpness of the results of Tariboon-Ntouyas and Merentes-Nikodem is proved as a consequence.

  • [1]

    Angulo, H., Giménez, J., Moros, A. M. and Nikodem, K., On strongly h-convex functions, Ann. Funct. Anal., 2(2)(2011), 8591.

  • [2]

    Azócar, A., Giménez, J., Nikodem, K. and Sánchez, J. L., On strongly midconvex functions, Opuscula Math., 31(1)(2011), 1526.

  • [3]

    Cristescu, G., and Lupsa, L., Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, (2002).

  • [4]

    Cristescu, G., Improved Integral Inequalities for Products of Convex Functions, Journal of Inequalities in Pure and Applied Mathematics, 6(2)(2005), [On line: http://www.emis.de/journals/JIPAM/article504.html?sid=504]

    • Search Google Scholar
    • Export Citation
  • [5]

    Dragomir, S. S. and Pearce, C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University Australia, 2000.

    • Search Google Scholar
    • Export Citation
  • [6]

    Dragomir, S. S. and Rassias, T. M., Ostrowski Type Inequalities and Applications in Numerical Integration, Springer Netherlands, 2002.

  • [7]

    Ernst, T., A Comprehensive Treatment of q-Calculus, Springer Basel Heidelberg New York Dordrecht London, 2012.

  • [8]

    Ernst, T., A Method for q-Calculus, J. Nonl. Math. Phy., 10(4)(2003), 487525.

  • [9]

    Gauchman, H., Integral inequalities in q-calculus. Comput. Math. Appl., 47(2004), 281300.

  • [10]

    Hiriart-Urruty, J. B. and Lemaréchal, C., Fundamentals of convex analysis, Springer-Verlag, Berlin Heidelberg, 2001.

  • [11]

    Jackson, F. H., On a q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910), 193203.

  • [12]

    Kak, V. and Cheung, P., Quantum Calculus, Springer Verlag, 2002.

  • [13]

    Merentes, N. and Nikodem, K., Remarks on strongly convex functions, Aequationes Math., 80(1-2)(2010), 193199.

  • [14]

    Nikodem, K. and Páles, Z., Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 5(1)(2011), 8387.

    • Search Google Scholar
    • Export Citation
  • [15]

    Noor, M. A., Noor, K. I. and Awan, M. U., Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251(2015), 675679.

    • Search Google Scholar
    • Export Citation
  • [16]

    Noor, M. A., Noor, K. I. and Awan, M. U., Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269(2015), 242251.

    • Search Google Scholar
    • Export Citation
  • [17]

    Noor, M. A., Awan, M. U. and Noor, K. I., Some new q-estimates for certain integral inequalities, Fact universities series: Mathematics and Informatics, to appear.

    • Search Google Scholar
    • Export Citation
  • [18]

    Noor, M. A., Noor, K. I. and Awan, M. U., Quantum Ostrowski inequalities for q-differentiable convex functions, J. Math. Inequal., to appear.

    • Search Google Scholar
    • Export Citation
  • [19]

    Pachpatte, B. G., Analytic inequalities: Recent Advances, Atlantic Press, Amsterdam-Paris. 2012.

  • [20]

    Pearce, C. E. M. and Pečarić, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2000), 5155.

    • Search Google Scholar
    • Export Citation
  • [21]

    Pečarić, J. E., Proschan, F. and Tong, Y. L., Convex functions, partial orderings and statistical applications, Academic Press, New York, 1992.

    • Search Google Scholar
    • Export Citation
  • [22]

    Polyak, B.T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet. Math. Dokl., 7(1966), 7275.

    • Search Google Scholar
    • Export Citation
  • [23]

    Rajba, T., On strong delta-convexity and Hermite-Hadamard type inequalities for delta-convex functions of higher order, Math. Inequal. Appl., 18(1)(2015), 267293.

    • Search Google Scholar
    • Export Citation
  • [24]

    Rajba, T. and Wasowicz, Sz., Probabilistic characterization of strong convexity, Opuscula Math., 31(1)(2011), 97103.

  • [25]

    Sudsutad, W., Ntouyas, S. K. and Tariboon, J., Quantum integral inequalities for convex functions, J. Math. Inequal., 9(3)(2015), 781793.

    • Search Google Scholar
    • Export Citation
  • [26]

    Taf, S., Brahim, K. and Riahi, L., Some results for Hadamard-type inequalities in quantum calculus, Le Mathematiche, LXIX, 2(2014), 243258.

    • Search Google Scholar
    • Export Citation
  • [27]

    Tariboon, J. and Ntouyas, S. K., Quantum integral inequalities on finite intervals, J. Inequal. App., 121(2014).

  • [28]

    Tariboon, J. and Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ., 282(2013).

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)