We classify the extreme 2-homogeneous polynomials on 2 with the hexagonal norm of weight ½. As applications, using its extreme points with the Krein-Milman Theorem, we explicitly compute the polarization and unconditional constants of .
Aron, R.M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel), 76 (2001), 73–80.
Choi, Y.S., Ki, H. and Kim, S.G., Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl. 228 (1998), 467–482.
Choi, Y.S. and Kim, S.G., The unit ball of P ( 2 l 2 2 ), Arch. Math. (Basel) 71 (1998), 472–480.
Choi, Y.S. and Kim, S.G., Extreme polynomials on c0, Indian J. Pure Appl. Math., 29 (1998), 983–989.
Choi, Y.S. and Kim, S.G., Smooth points of the unit ball of the space ρ(2 l1), Results Math., 36 (1999), 26–33.
Choi, Y.S. and Kim, S.G., Exposed points of the unit balls of the spaces P ( 2 l p 2 ) (p = 1, 2, ∞), Indian J. Pure Appl. Math., 35 (2004), 37–41.
Dineen, S. , Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
Gamez-Merino, J.L., Munoz-Fernandez, G.A., Sanchez, V.M. and Seoane-Sepulveda, J.B., Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Anal., 340 (2013), no. 1, 125–142.
Grecu, B.C. , Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl., 246 (2000), 217–229.
Grecu, B.C. , Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math., (Basel) 76 (2001), no. 6, 445–454.
Grecu, B.C. , Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl., 273 (2002), 262–282.
Grecu, B.C. , Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math., 25 (2002), no. 4, 421–435.
Grecu, B.C. , Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces J. Math. Anal. Appl., 293 (2004), 578–588.
Grecu, B.C., G.A. Munoz-Fernandez, and J.B. Seoane-Sepulveda, The unit ball of the complex P(3 H), Math. Z., 263 (2009), 775–785.
Kim, S.G. , Exposed 2-homogeneous polynomials on P ( 2 l p 2 ) (1 ≤ p ≤ ∞), Math. Proc. Royal Irish Acad., 107 (2007), 123–129.
Kim, S.G. , The unit ball of ℒ s ( 2 l ∞ 2 ), Extracta Math., 24 (2009), 17–29.
Kim, S.G. , The unit ball of ρ(2 d*(1, w)2), Math. Proc. Royal Irish Acad., 111 (2) (2011), 79–94.
Kim, S.G. , The unit ball of ℒs(2 d*(1, w)2), Kyungpook Math. J., 53 (2013), 295–306.
Kim, S.G. , Smooth polynomials of ρ(2 d*(1, w)2), Math. Proc. Royal Irish Acad., 113A (1) (2013), 45–58.
Kim, S.G. , Extreme bilinear forms of ℒ(2 d*(1, w)2), Kyungpook Math. J., 53 (2013), 625–638.
Kim, S.G. , Exposed symmetric bilinear forms of ℒs(2 d*(1, w)2), Kyungpook Math. J., 54 (2014), 341–347.
Kim, S.G. , Polarization and unconditional constants of ρ(2 d*(1, w)2), Commun. Korean Math. Soc., 29 (2014), 421–428.
Kim, S.G. , Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13 (2016), 2827–2839.
Kim, S.G. , Extremal problems for ℒ s ( 2 ℝ h ( w ) 2 ), Kyungpook Math. J., 57 (2) (2017), 223–232.
Kim, S.G. and Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131 (2003), 449–453.
Kim, S.G. , Exposed 2-homogeneous polynomials on the plane with a hexagonal norm, Preprint.
Kim, S.G. , Smooth 2-homogeneous polynomials on the plane with a hexagonal norm, Preprint.
Kim, S.G. , The unit ball of ℒ s ( 2 l ∞ 3 ), Comment. Math. Prace Mat., 57 (2017), 1–7.
Kim, S.G. , The unit ball of ℒ ( 2 ℝ h ( w ) 2 ), Bull. Korean Math. Soc., 54 (2) (2017), 417–428.
Konheim, A.G. and Rivlin, T.J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505–507.
Milev, L. and Naidenov, N., Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulg. Sci., 61 (2008), 1393–1400.
Milev, L. and Naidenov, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl., 405 (2013), 631–641.
Munoz-Fernandez, G.A., Pellegrino, D., Seoane-Sepulveda, J.B. and Weber, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal., 21 (2014), no. 3, 745–764.
Munoz-Fernandez, G.A., Revesz, S. and Seoane-Sepulveda, J.B, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105 (2009), 147–160.
Munoz-Fernandez, G.A. and Seoane-Sepulveda, J.B, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340 (2008), 1069–1087.
Neuwirth, S. , The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104 (2008), 371–396.
Revesz, S. and Sarantopoulos, Y., Plank problems, polarization and Chebyshev constants, J. Korean Math. Soc., 41 (2004), 157–174.
Ryan, R.A. and Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221 (1998), 698–711.