View More View Less
  • 1 Kyungpook National University, Daegu 702-701, South Korea
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We classify the extreme 2-homogeneous polynomials on 2 with the hexagonal norm of weight ½. As applications, using its extreme points with the Krein-Milman Theorem, we explicitly compute the polarization and unconditional constants of P(2h(12)2).

  • [1]

    Aron, R.M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel), 76 (2001), 7380.

  • [2]

    Choi, Y.S., Ki, H. and Kim, S.G., Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl. 228 (1998), 467482.

  • [3]

    Choi, Y.S. and Kim, S.G., The unit ball of P ( 2 l 2 2 ), Arch. Math. (Basel) 71 (1998), 472480.

  • [4]

    Choi, Y.S. and Kim, S.G., Extreme polynomials on c0, Indian J. Pure Appl. Math., 29 (1998), 983989.

  • [5]

    Choi, Y.S. and Kim, S.G., Smooth points of the unit ball of the space ρ(2 l1), Results Math., 36 (1999), 2633.

  • [6]

    Choi, Y.S. and Kim, S.G., Exposed points of the unit balls of the spaces P ( 2 l p 2 ) (p = 1, 2, ∞), Indian J. Pure Appl. Math., 35 (2004), 3741.

    • Search Google Scholar
    • Export Citation
  • [7]

    Dineen, S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).

  • [8]

    Gamez-Merino, J.L., Munoz-Fernandez, G.A., Sanchez, V.M. and Seoane-Sepulveda, J.B., Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Anal., 340 (2013), no. 1, 125142.

    • Search Google Scholar
    • Export Citation
  • [9]

    Grecu, B.C., Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl., 246 (2000), 217229.

  • [10]

    Grecu, B.C., Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math., (Basel) 76 (2001), no. 6, 445454.

  • [11]

    Grecu, B.C., Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl., 273 (2002), 262282.

  • [12]

    Grecu, B.C., Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math., 25 (2002), no. 4, 421435.

  • [13]

    Grecu, B.C., Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces J. Math. Anal. Appl., 293 (2004), 578588.

  • [14]

    Grecu, B.C., G.A. Munoz-Fernandez, and J.B. Seoane-Sepulveda, The unit ball of the complex P(3 H), Math. Z., 263 (2009), 775785.

  • [15]

    Kim, S.G., Exposed 2-homogeneous polynomials on P ( 2 l p 2 ) (1 ≤ p ≤ ∞), Math. Proc. Royal Irish Acad., 107 (2007), 123129.

  • [16]

    Kim, S.G., The unit ball of s ( 2 l 2 ), Extracta Math., 24 (2009), 1729.

  • [17]

    Kim, S.G., The unit ball of ρ(2 d*(1, w)2), Math. Proc. Royal Irish Acad., 111 (2) (2011), 7994.

  • [18]

    Kim, S.G., The unit ball of ℒs(2 d*(1, w)2), Kyungpook Math. J., 53 (2013), 295306.

  • [19]

    Kim, S.G., Smooth polynomials of ρ(2 d*(1, w)2), Math. Proc. Royal Irish Acad., 113A (1) (2013), 4558.

  • [20]

    Kim, S.G., Extreme bilinear forms of ℒ(2 d*(1, w)2), Kyungpook Math. J., 53 (2013), 625638.

  • [21]

    Kim, S.G., Exposed symmetric bilinear forms of ℒs(2 d*(1, w)2), Kyungpook Math. J., 54 (2014), 341347.

  • [22]

    Kim, S.G., Polarization and unconditional constants of ρ(2 d*(1, w)2), Commun. Korean Math. Soc., 29 (2014), 421428.

  • [23]

    Kim, S.G., Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13 (2016), 28272839.

    • Search Google Scholar
    • Export Citation
  • [24]

    Kim, S.G., Extremal problems for s ( 2 h ( w ) 2 ), Kyungpook Math. J., 57 (2) (2017), 223232.

  • [25]

    Kim, S.G. and Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131 (2003), 449453.

  • [26]

    Kim, S.G., Exposed 2-homogeneous polynomials on the plane with a hexagonal norm, Preprint.

  • [27]

    Kim, S.G., Smooth 2-homogeneous polynomials on the plane with a hexagonal norm, Preprint.

  • [28]

    Kim, S.G., The unit ball of s ( 2 l 3 ), Comment. Math. Prace Mat., 57 (2017), 17.

  • [29]

    Kim, S.G., The unit ball of ( 2 h ( w ) 2 ), Bull. Korean Math. Soc., 54 (2) (2017), 417428.

  • [30]

    Konheim, A.G. and Rivlin, T.J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505507.

    • Search Google Scholar
    • Export Citation
  • [31]

    Milev, L. and Naidenov, N., Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulg. Sci., 61 (2008), 13931400.

    • Search Google Scholar
    • Export Citation
  • [32]

    Milev, L. and Naidenov, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl., 405 (2013), 631641.

    • Search Google Scholar
    • Export Citation
  • [33]

    Munoz-Fernandez, G.A., Pellegrino, D., Seoane-Sepulveda, J.B. and Weber, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal., 21 (2014), no. 3, 745764.

    • Search Google Scholar
    • Export Citation
  • [34]

    Munoz-Fernandez, G.A., Revesz, S. and Seoane-Sepulveda, J.B, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105 (2009), 147160.

    • Search Google Scholar
    • Export Citation
  • [35]

    Munoz-Fernandez, G.A. and Seoane-Sepulveda, J.B, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340 (2008), 10691087.

    • Search Google Scholar
    • Export Citation
  • [36]

    Neuwirth, S., The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104 (2008), 371396.

  • [37]

    Revesz, S. and Sarantopoulos, Y., Plank problems, polarization and Chebyshev constants, J. Korean Math. Soc., 41 (2004), 157174.

  • [38]

    Ryan, R.A. and Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221 (1998), 698711.