View More View Less
  • 1 Peking University, Beijing, 100871, China
  • | 2 Central China Normal University, Wuhan, 430079, China
  • | 3 Youngstown State University, Youngstown, Ohio 44555-0002, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this article, we give some reviews concerning negative probabilities model and quasi-infinitely divisible at the beginning. We next extend Feller’s characterization of discrete infinitely divisible distributions to signed discrete infinitely divisible distributions, which are discrete pseudo compound Poisson (DPCP) distributions with connections to the Lévy-Wiener theorem. This is a special case of an open problem which is proposed by Sato (2014), Chaumont and Yor (2012). An analogous result involving characteristic functions is shown for signed integer-valued infinitely divisible distributions. We show that many distributions are DPCP by the non-zero p.g.f. property, such as the mixed Poisson distribution and fractional Poisson process. DPCP has some bizarre properties, and one is that the parameter λ in the DPCP class cannot be arbitrarily small.

  • [1]

    Albeverio, S., Gottschalk, H., Wu, J. L., Partly divisible probability distributions, Forum Mathematicum, 10(6) (1998), 687698.

  • [2]

    Baez-Duarte, L., Central limit theorem for complex measures, Journal of Theoretical Probability, 6(1) (1993), 3356.

  • [3]

    Baishanski, B., Norms of powers and a central limit theorem for complex-valued probabilities, in: Analysis of Divergence (pp. 523543). Birkhäuser, Boston, 1998.

    • Search Google Scholar
    • Export Citation
  • [4]

    Beghin, L., Macci, C., Fractional discrete processes: compound and mixed Poisson representations, Journal of Applied Probability, 51 (2014), 1936.

    • Search Google Scholar
    • Export Citation
  • [5]

    Beurling, A., Sur les intégrales de Fourier absolument convergentes et leur applicationa une transformation fonctionnelle, in: Ninth Scandinavian Mathematical Congress (pp. 345366), 1938.

    • Search Google Scholar
    • Export Citation
  • [6]

    Beurling, A., Helson, H., Fourier-Stieltjes transforms with bounded powers, Mathematica Scandinavica, 1 (1953), 120126.

  • [7]

    Buchmann, B., GrÜbel, R., Decompounding: an estimation problem for Poisson random sums, The Annals of Statistics, 31(4) (2003), 10541074.

    • Search Google Scholar
    • Export Citation
  • [8]

    Bogachev, V. I., Measure theory (Vol. II.). Springer, Berlin, 2007.

  • [9]

    Chaumont, L., Yor, M., Exercises in Probability: a guided tour from measure theory to random processes, via conditioning, Second edition, Cambridge University Press, 2012.

    • Search Google Scholar
    • Export Citation
  • [10]

    Demni, N., Mouayn, Z., Analysis of generalized Poisson distributions associated with higher Landau levels, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 18(04) (2015), 1550028.

    • Search Google Scholar
    • Export Citation
  • [11]

    Feller, W., An introduction to probability theory and its applications, Vol. I. 3ed., Wiley, New York.

  • [12]

    Feller, W., An introduction to probability theory and its applications, Vol. II. 2ed., Wiley, New York, 2071.

  • [13]

    Haight, F. A., Handbook of the Poisson distribution, Wiley, Los Angeles, 1967.

  • [14]

    Hürlimann, W., Pseudo compound Poisson distributions in risk theory, ASTIN Bulletin, 20(1) (1990), 5779.

  • [15]

    Itô, K., Stochastic processes: Lectures given at Aarhus University, Springer, Berlin, 2004.

  • [16]

    Jánossy, L., Rényi, A., Aczél, J., On composed Poisson distributions, I., Acta Mathematica Hungarica, 1(2) (1950), 209224.

  • [17]

    Johnson, N. L., Kemp, A. W., Kotz, S., Univariate Discrete Distributions, 3ed., Wiley, New Jersey, 2005.

  • [18]

    Jørgensen, B., The theory of dispersion models, Chapman & Hall, London, 1997.

  • [19]

    Karymov, D. N., On the decomposition of lattice distributions into convolutions of Poisson signed measures, Theory of Probability & Its Applications, 49(3) (2005), 545552.

    • Search Google Scholar
    • Export Citation
  • [20]

    Kemp, A. W., Convolutions involving binomial pseudo-variables, Sankhya: The Indian Journal of Statistics, Series A (1979), 232243.

  • [21]

    Kerns, G. J., Signed measures in exchangeability and infinite divisibility (Doctoral dissertation, Bowling Green State University), 2004.

    • Search Google Scholar
    • Export Citation
  • [22]

    Laskin, N., Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation, 8(3) (2003), 201213.

  • [23]

    Letac, G., Malouche, D., Maurer, S., The real powers of the convolution of a negative binomial distribution and a Bernoulli distribution, Proceedings of the American Mathematical Society, 130(7) (2002), 21072114.

    • Search Google Scholar
    • Export Citation
  • [24]

    Lévy, P., Sur la convergence absolue des séries de Fourier, Compositio Mathematica, 1 (1935), 114.

  • [25]

    Lévy, P., Théorie de l’addition des variables aléatoires, Gauthiers-Villars, Paris, 1937.

  • [26]

    Lévy, P., Sur les exponentielles de polynômes et sur l’arithmétique des produits de lois de Poisson, Annales scientifiques de l’École Normale Supérieure, 54 (1937), 231292.

    • Search Google Scholar
    • Export Citation
  • [27]

    Lindner, A., Pan, L., Sato, K., On quasi-infinitely divisible distributions, to appear in Trans. Amer. Math. Soc. https://arxiv.org/abs/1701.02400.

    • Search Google Scholar
    • Export Citation
  • [28]

    Maceda, E. C., On the compound and generalized Poisson distributions, The Annals of Mathematical Statistics, 19(3) (1948), 414416.

  • [29]

    Meerschaert, M. M., Scheffler, H. P., Limit distributions for sums of independent random vectors: Heavy tails in theory and practice, Wiley, New York, 2001.

    • Search Google Scholar
    • Export Citation
  • [30]

    Milne, R. K., Westcott, M., Generalized multivariate Hermite distributions and related point processes,. Annals of the Institute of Statistical Mathematics, 45(2) (1993), 367381.

    • Search Google Scholar
    • Export Citation
  • [31]

    Nakamura, T., A quasi-infinitely divisible characteristic function and its exponentiation, Statistics & Probability Letters, 83(10) (2013), 22562259.

    • Search Google Scholar
    • Export Citation
  • [32]

    Nakamura, T., A complete Riemann zeta distribution and the Riemann hypothesis, Bernoulli, 21(1) (2015), 604617.

  • [33]

    Nahla, B. S., Afif, M., The real powers of the convolution of a gamma distribution and a Bernoulli distribution, Journal of Theoretical Probability, 24(2) (2011), 450453.

    • Search Google Scholar
    • Export Citation
  • [34]

    Popov, A. Y., Sedletskii, A. M., Distribution of roots of Mittag-Leffler functions, Journal of Mathematical Sciences, 190(2) (2013), 209409.

    • Search Google Scholar
    • Export Citation
  • [35]

    Ruzsa, I. Z., Székely, G. J., Convolution quotients of nonnegative functions, Monatshefte fÜr Mathematik, 95(3) (1983), 235239.

  • [36]

    Sato, K., Lévy processes and infinitely divisible distributions, Revised edition, Cambridge University Press, Cambridge, 2013.

  • [37]

    Sato, K., Stochastic integrals with respect to Lévy processes and infinitely divisible distributions, Sugaku Expositions, 27 (2014), 1942.

    • Search Google Scholar
    • Export Citation
  • [38]

    Székely, G. J., Half of a coin: negative probabilities, Wilmott Magazine (2005), 6668.

  • [39]

    van Haagen, A. J., Finite signed measures on function spaces, Pacific Journal of Mathematics, 95(2) (1981), 467482.

  • [40]

    van Haagen, A. J., Classifying infinitely divisible distributions by functional equations, Amsterdam: Mathematisch (1978).

  • [41]

    Vellaisamy, P., Maheshwari, A., Fractional negative binomial and Polya processes. arXiv preprint arXiv:1306.2493, to appear in Probability and Mathematical Statistics.

  • [42]

    Zhang, H., Liu, Y., Li, B., Notes on discrete compound Poisson model with applications to risk theory, Insurance: Mathematics and Economics, 59 (2014), 325336.

    • Search Google Scholar
    • Export Citation
  • [43]

    Zhang, H., Li, B., Characterizations of discrete compound Poisson distributions, Communications in Statistics-Theory and Methods, 45(22) (2016), 67896802.

    • Search Google Scholar
    • Export Citation
  • [44]

    Zygmund, A., Trigonometric series, third edition, Vol I, II, Cambridge University Press, Cambridge, 2002.

  • [45]

    Zhang, H., Wu, X., Notes on discrete compound Poisson point process and its concentration inequalities, arXiv preprint arXiv:1709.04159.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)