View More View Less
  • 1 Balikesir University Department of Mathematics, Balikesir Turkey
  • | 2 Institute of Mathematics and Mechanics of ANAS, Baku Azerbaijan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let G be a finite simple connected domain in the complex plane C, bounded by a Carleson curve Γ := ∂G. In this work the direct and inverse theorems of approximation theory by the algebraic polynomials in the weighted generalized grand Smirnov classes εp),θ(G,ω) and εp),θ(G,ω), 1 < p < ∞, in the term of the rth, r = 1, 2,..., mean modulus of smoothness are proved. As a corollary the constructive characterizations of the weighted generalized grand Lipschitz classes are obtained.

  • [1]

    Alper, S. Y., Approximation in the mean of analytic functions of class Ep. (Russian), in book: Investigations on the modern problems of the function theory of a complex variable, Moscow: Gos. Izdat. Fiz. Mat. Lit., 273286, 1960.

    • Search Google Scholar
    • Export Citation
  • [2]

    Anderson, J. E., On the Degree of Polynomial Approximation in Ep(D), J. Approx. Theory, 19 (1977), 6168.

  • [3]

    Danelia, N. and Kokilashvili, V., On the approximation of periodic functions with in the frame of grand Lebesgue space, Bull. Georg. Nation. Aca. Sci., 6(2) (2012), 1116.

    • Search Google Scholar
    • Export Citation
  • [4]

    Danelia, N. and Kokilashvili, V., Approximation by trigonometric polynomials in subspace of weighted grand Lebesgue space, Bull. Georg. Nation. Aca. Sci., 7(1) (2013), 1115.

    • Search Google Scholar
    • Export Citation
  • [5]

    D’Onofrio, L., Sbordone, C. and Schiattarella, R., Grand Sobolev spaces and their application in geometric function theory and PDEs, Journal of Fixed Point Theory and Appl., 13 (2013), 309340.

    • Search Google Scholar
    • Export Citation
  • [6]

    Fiorenza, A. and Krbec, M., On domain and range of the maximal operator, Nagoya Math. J., 158 (2000), 4361.

  • [7]

    Fiorenza, A. and Sbordone, C., Existence and uniqueness results for solutions of nonlinear equations with right hand side in L1, Studia Math., 127(3) (1998), 223231.

    • Search Google Scholar
    • Export Citation
  • [8]

    Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs, Vol. 26, AMS 1969.

  • [9]

    Greco, L., Iwaniec, T. and Sbordone, C., Inverting the p-harmonic operator, Manuscripta Math., 92 (1997), 249258.

  • [10]

    Ibragimov, I. I. and Mamedkhanov, D. I., A constructive characterization of a certain class of functions, Dokl. Akad. Nauk SSSR, 223 (1975), 3537, Soviet Math. Dokl., 4 (1976), 820–823.

    • Search Google Scholar
    • Export Citation
  • [11]

    Israfilov, D. M., Approximation by p-Faber polynomials in the weighted Smirnov class Ep(G, ω) and the Bieberbach polynomials, Constructive approximation, 17(3), (2001), 335351.

    • Search Google Scholar
    • Export Citation
  • [12]

    Israfilov, D. M., Approximation by p-Faber-Laurent Rational functions in weighted Lebesgue spaces, Czechoslovak Mathematical Journal, 54(129), (2004), 751765.

    • Search Google Scholar
    • Export Citation
  • [13]

    Israfilov, D. M. and Guven, A., Approximation in weighted Smirnov classes, East journal on approximation, 11(1), (2005), 91102.

  • [14]

    Israfilov, D. M. and Testici, A., Approximation in weighted generalized grand Lebesgue spaces spaces, Colloquium Mathematicum, Institute of Mathematics Polish Academy of Sciences, 143(1) (2016), 113126.

    • Search Google Scholar
    • Export Citation
  • [15]

    Iwaniec, T. and Sbordone, C., On integrability of the Jacobian under minimal hypotheses, Arch. Rational Mechanics Anal., 119 (1992), 129143.

    • Search Google Scholar
    • Export Citation
  • [16]

    Iwaniec, T. and Sbordone, C., Riesz Transform and elliptic pde’s with VMO coefficients, J. Analyse Math., 74 (1998), 183212.

  • [17]

    Jafarov, Sadulla Z., On approximation of functions by p–Faber-Laurent rational functions, Complex Variables and Elliptic Equations, 60(3), 2015, 416428.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kokilashvili, V., A direct theorem on Mean Approximation of Analytic Functions by Polynomials, Soviet Math. Dokl., 10 (1969), 411414.

    • Search Google Scholar
    • Export Citation
  • [19]

    Kokilashvili, V., Boundedness criteria for singular integrals in weighted grand Lebesgue spaces, Jour. Math. Sci., 170(3), (2010), 2033.

    • Search Google Scholar
    • Export Citation
  • [20]

    Ky, N. X., Moduli of mean smoothness and Approximation with Ap weights, Annales Univ. Sci. Budapest., 40 (1997), 3738.

  • [21]

    Sbordone, C., Grand Sobolev spaces and their applications to variational problems, Le Mathematiche, LI(2) (1996), 335347.

  • [22]

    Sbordone, C., Nonlinear elliptic equations with right hand side in nonstandard spaces, Rend. Sem. Math. Fis. Modena, Supplemento al XLVI (1998), 361368.

    • Search Google Scholar
    • Export Citation
  • [23]

    Tsanava, T. and Kokilashvili, V., Some notes the majorants of Fourier partial sums in new function spaces, Jour. Tech. Sci. Tech., 1(1) (2012), 2931.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)