View More View Less
  • 1 Hungarian Academy of Sciences, Reáltanoda u. 13–15, 1053 Budapest, Hungary
  • | 2 Universidad Autónoma Metropolitana, Av. San Rafael Atlixco, 186, Col. Vicentina, Iztapalapa, C. P. 09340, Mexico D. F., Mexico
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A space X is weakly linearly Lindelöf if for any family U of non-empty open subsets of X of regular uncountable cardinality κ, there exists a point xX such that every neighborhood of x meets κ-many elements of U. We also introduce the concept of almost discretely Lindelöf spaces as the ones in which every discrete subspace can be covered by a Lindelöf subspace. We prove that, in addition to linearly Lindelöf spaces, both weakly Lindelöf spaces and almost discretely Lindelöf spaces are weakly linearly Lindelöf.

The main result of the paper is formulated in the title. It implies that every weakly Lindelöf monotonically normal space is Lindelöf, a result obtained earlier in [3].

We show that, under the hypothesis 2ω < ωω, if the co-diagonal ΔcX = (X × X) \ΔX is discretely Lindelöf, then X is Lindelöf and has a weaker second countable topology; here ΔX = {(x, x): xX} is the diagonal of the space X. Moreover, discrete Lindelöfness of ΔcX together with the Lindelöf Σ-property of X imply that X has a countable network.

  • [1]

    Alas, O. T., Junqueira, L. R., Tkachuk, V. V. and Wilson, R. G., Discrete reflexivity in squares, Houston J. Math., 42:2 (2016), 659673.

    • Search Google Scholar
    • Export Citation
  • [2]

    Alas, O. T., Tkachuk, V. V. and Wilson, R. G., Closures of discrete sets often reflect global properties, Topology Proc., 25 (2000), 2744.

    • Search Google Scholar
    • Export Citation
  • [3]

    Alas, O. T., Tkachuk, V. V. and Wilson, R. G., Covering properties and neighbourhood assignments, Topology Proc., 30:1 (2006), 2537.

    • Search Google Scholar
    • Export Citation
  • [4]

    Arhangel’skiĭ, A. V., The structure and classification of topological spaces and cardinal invariants (in Russian), Uspehi Matem. Nauk, 33:6 (1978), 2984.

    • Search Google Scholar
    • Export Citation
  • [5]

    Arhangel’skiĭ, A. V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 36:2 (1995), 303325.

    • Search Google Scholar
    • Export Citation
  • [6]

    Arhangel’skiĭ, A. V. and Buzyakova, R. Z., On linearly Lindelöf and strongly discretely Lindelöf spaces, Proc. Amer. Math. Soc., 127:8 (1999), 24492458.

    • Search Google Scholar
    • Export Citation
  • [7]

    Balogh, Z. and Rudin, M. E., Monotone normality, Topology Appl., 47 (1992), 115127.

  • [8]

    Burke, D. and Tkachuk, V. V., Discrete reflexivity and complements of the diagonal, Acta Math. Hungar., 139 (2013), 120-133.

  • [9]

    Engelking, R., General Topology, Heldermann Verlag, Berlin, 1989.

  • [10]

    Gartside, P. M., Cardinal invariants of monotonically normal spaces, Topology Appl., 77:3 (1997), 303314.

  • [11]

    Gruenhage, G., Spaces having a small diagonal, Topology and Its Appl., 122 (2002), 183200.

  • [12]

    Hodel, R. E., Cardinal Functions I, Handbook of Set-Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North Holland, Amsterdam, 1984, 161.

    • Search Google Scholar
    • Export Citation
  • [13]

    Juhász, I., Cardinal Functions in Topology — Ten Years Later, Mathematical Centre Tracts, 123, Amsterdam, 1980.

  • [14]

    Juhász, I., HFD and HFC type spaces, with applications, Topology Appl., 126 (2002), 217262.

  • [15]

    Michael, E. A., Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math., 23:2 (1971), 199214.

    • Search Google Scholar
    • Export Citation
  • [16]

    Ostaszewski, A. J., On countably compact, perfectly normal spaces, J. London Math. Soc., 14:2 (1976), 505516.

  • [17]

    Pearl, E., Linearly Lindelöf problems, Open Problems in Topology, II, Elsevier B. V., Amsterdam, 2007, 225231.

  • [18]

    Tkachuk, V. V., Spaces that are projective with respect to classes of mappings, Trans. Moscow Math. Soc., 50 (1988), 139156.

  • [19]

    Tkachuk, V. V., Lindelöf Σ-spaces: an omnipresent class, RACSAM, Ser. A: Matematicas, 104:2 (2010), 221-244.

  • [20]

    Tkachuk, V. V., A Cp-theory Problem Book. Topological and Function Spaces, Springer, New York, 2011.

  • [21]

    Tkachuk, V. V., A Cp-theory Problem Book. Special Features of Function Spaces, Springer, New York, 2014.

  • [22]

    Tkachuk, V. V., A Cp-theory Problem Book. Compactness in Function Spaces, Springer, New York, 2015.

  • [23]

    Tkachuk, V. V. and Wilson, R. G., Discrete reflexivity in GO spaces, Glasnik Mat., 49 (2014), 433446.

  • [24]

    de la Vega, R. and Kunen, K., A compact homogeneous S-space, Topol. Appl. , 136 (2004), 123127.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)