View More View Less
  • 1 Central South University, Changsha, Hunan, 410083, P. R. China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we prove the existence of infinitely many solutions for the following class of boundary value elliptic problems {Δλu+V(x)u=f(x,u),xΩ,u=0,xΩ, where Ω is a bounded domain in RN (N ≥ 2), Δλ is a strongly degenerate elliptic operator, V (x) is allowing to be sign-changing and f is a function with a more general super-quadratic growth, which is weaker than the Ambrosetti-Rabinowitz type condition.

  • [1]

    Zhang, X. Y., Existence and multiplicity of solutions for a class of elliptic boundary value problems, J. Math. Anal. Appl., 410 (2014), 213226.

    • Search Google Scholar
    • Export Citation
  • [2]

    Pan, H. L. and Tang, C. L., Existence of infinitely many solutions for semilinear elliptic equations, Electron. J. Differential Equations, 167 (2016), 111.

    • Search Google Scholar
    • Export Citation
  • [3]

    Wu, Y. and An, T. Q., Infinitely many solutions for a class of semilinear elliptic equations, J. Math. Anal. Appl., 414 (2014), 285295.

    • Search Google Scholar
    • Export Citation
  • [4]

    Zhang, W., Tang, X. H. and Zhang, J., Existence of infinitely many solutions for elliptic boundary value problems with sign-changing potential, Electron. J. Differential Equations, 53 (2014), 111.

    • Search Google Scholar
    • Export Citation
  • [5]

    Zhang, Q. Y. and Liu, C. G., Multiple solutions for a class of semilinear elliptic equations with general potentials, Nonlinear Anal., 75 (2012), 54735481.

    • Search Google Scholar
    • Export Citation
  • [6]

    Ye, Y. W. and Tang, C. L., Multiplicity of solutions for elliptic boundary value problems, Electron. J. Differential Equations, 140 (2014), 113.

    • Search Google Scholar
    • Export Citation
  • [7]

    Qing, D. D., Tang, X. H. and Zhang, J., Multiple solutions for a class of semilinear elliptic equations with general potentials, Electron. J. Differential Equations, 207 (2013), 19.

    • Search Google Scholar
    • Export Citation
  • [8]

    Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349381.

    • Search Google Scholar
    • Export Citation
  • [9]

    Rabinowitz, P. H., On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys., 43 (1992), 270291.

  • [10]

    Franchi, B. and Lanconelli, E., Une métrique associée à une classe d’opérateurs elliptiques dégénerés, (French) [A metric associated with a class of degenerate elliptic operators], Rend. Sem. Mat. Univ. e Politec. Torino, Proceedings of the meeting “Linear Partial and Pseudo Differential Operators”, Rendiconti del Seminario Matematico, Universitáe Politecnico Torino; 1983. Special Issue, 1984, 105114.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kogoj, A. E. and Lanconelli, E., On semilinear Δλ-Laplace equation, Nonlinear Anal., 75 (2012), 46374649.

  • [12]

    Anh, C. T. and My, B. K., Existence of solutions to Δλ-Laplace equations without the Ambrosetti-Rabinowitz condition, Complex Var. Elliptic Equ., 61 (2016), 137150.

    • Search Google Scholar
    • Export Citation
  • [13]

    Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, in: CBMS Reg. Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kogoj, A. E. and Sonner, S., Attractors for a class of semi-linear degenerate parabolic equations, J. Evol. Equ., 13 (2013), 675691.

    • Search Google Scholar
    • Export Citation
  • [15]

    Kogoj, A. E. and Sonner, S., Hardy type inequalities for Δλ-Laplacians, Complex Var. Elliptic Equ., 61 (2016), 422442.

  • [16]

    Thao, M. X., On the global attractor for a semilinear strongly degenerate Parabolic equation, Acta. Math. Vietnam., 41 (2016), 283297.

    • Search Google Scholar
    • Export Citation
  • [17]

    Anh, C. T. and My, B. K., Liouville-type theorems for elliptic inequalities involving the Δλ-Laplace operator, Complex Var. Elliptic Equ., 61 (2016), 10021013.

    • Search Google Scholar
    • Export Citation
  • [18]

    Tang, X. H., Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity, J. Math. Anal. Appl., 401 (2013), 407415.

    • Search Google Scholar
    • Export Citation
  • [19]

    Chen, J. H., Tang, X. H. and Gao, Z., Existence of multiple solutions for modified Schrödinger-Kirchhoff-Poisson type systems via perturbation method with sign-changing potential, Comput. Math. Appl., 73 (2017), 505519.

    • Search Google Scholar
    • Export Citation
  • [20]

    Cheng, B. and Tang, X. H., High energy solutions of modified quasilinear fourthorder elliptic equations with sign-changing potential, Comput. Math. Appl., 73 (2017), 2736.

    • Search Google Scholar
    • Export Citation
  • [21]

    Chen, J. H., Cheng, B. and Tang, X. H., New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional p-Laplacian with sign-changing potential, Rev. Real Acad. Cienc. Exactas F., (2016), DOI: 10.1007/s13398–016-0372–5.

    • Search Google Scholar
    • Export Citation
  • [22]

    Chen, J. H., Tang, X. H. and Luo, H., Infinitely many solutions for the fractional Schrödinger-Poisson system with sign-changing potential, Electron. J. of Differential Equations, 97 (2017), 113.

    • Search Google Scholar
    • Export Citation
  • [23]

    >Zhang, J., Tang, X. H. and Zhang, W., Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 17621775.

    • Search Google Scholar
    • Export Citation
  • [24]

    Zhang, J., Tang, X. H. and Zhang, W., Existence of multiple solutions of Kirchhoff type equation with sign-changing potential, Appl. Math. Comput., 242 (2014), 491499.

    • Search Google Scholar
    • Export Citation
  • [25]

    Zhang, W., Tang, X. H. and Zhang, J., Infinitely many solutions for fourthorder elliptic equations with sign-changing potential, Taiwanese J. Math., 18 (2014), 645659.

    • Search Google Scholar
    • Export Citation
  • [26]

    Zhang, Q. and Wang, Q., Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl., 389 (2012), 511518.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)