This paper is devoted to study the following Schrödinger-Poisson system where λ is a positive parameter, a ∈ C(R3,R+) has a bounded potential well Ω = a−1(0), b ∈ C(R3, R) is allowed to be sign-changing, K ∈ C(R3, R+) and f ∈ C(R, R). Without the monotonicity of f(t)=/|t|3 and the Ambrosetti-Rabinowitz type condition, we establish the existence and exponential decay of positive multi-bump solutions of the above system for , and obtain the concentration of a family of solutions as λ →+∞, where is determined by terms of a, b, K and f. Our results improve and generalize the ones obtained by C. O. Alves, M. B. Yang [3] and X. Zhang, S. W. Ma [38].
Alves, C. O. and Souto, M. A. S., Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254(4) (2013), 1977–1991.
Alves, C. O. and Souto, M. A. S., Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153–1166.
Alves, C. O. and Yang, M. B., Existence of positive multi-bump solutions for a Schrödinger-Poisson system in R3, Discrete Contin. Dyn. Syst., 36 (2016), 5881–5910.
Benci, V. and Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293.
Benci, V. and Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409–420.
Benguria, R., Brezis, H. and Lieb, E. H., The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167–180.
Catto, I. and Lions, P. L., Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and suffcient condition for the stability of general molecular system, Comm. Partial Differential Equations, 17 (1992), 1051–1110.
Cerami, G. and Vaira, G., Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521–543.
Chen, S. T. and Tang, X. H., Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in R3, Z. Angew. Math. Phys., 67 (2016), 1–18.
Chen, S. T. and Tang, X. H., Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017), 363–383.
Chen, S. T. and Tang, X. H., Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017), 446–458.
Chen, S. T. and Tang, X. H., Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential, Appl. Math. Lett., 67 (2017), 40–45.
del Pino, D. and Felmer, P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121–137.
Ding, Y. H. and Tanaka, K., Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscr. Math., 112 (2003), 109–135.
T. D’Aprile and Mugnai, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb. Sect. A, 134 (2004), 893–906.
He, X. M. and Zou, W. M., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012) 023702.
Ianni, I. and Ruiz, D., Ground and bound states for a static Schrödinger-Poisson-Slater problem, Commun. Contemp. Math., 14 (2012) 1250003.
Li, F. Y., Li, Y. H. and Shi, J. P., Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16(06) (2014) 1450036.
Li, G. B., Peng, S. J. and Yan, S. S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12(06) (2010), 1069–1092.
Lieb, E. H., Thomas-Fermi and related theories and molecules, Rev. Modern Phys., 53 (1981), 603–641.
Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. of Math., 118 (1983), 349–374.
Lieb, E. H. and Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14. AMS, 1997.
Lions, P. L., Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1984), 33–97.
Jiang, Y. and Zhou, H. S., Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251(3) (2011), 582–608.
Markowich, P., Ringhofer, C. and Schmeiser, C., Semiconductor Equations, Springer-Verlag, New York, 1990.
Miranda, C., Un’ osservazione su un teorema di Brouwer, Bol. Un. Mat. Ital., 3 (1940), 5–7.
Ruiz, D., On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198(1) (2010), 349–368.
Shuai, W., Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations, 259 (2015), 1256–1274.
Simon, B., Schrödinger semigroups, Bull. Am. Math. Soc. (N.S), 7 (1981), 447–526.
Sun, J. T., Chen, H. B. and Nieto, J. J., On ground state solutions for some non-autonomous Schröinger-Maxwell systems, J. Differential Equations, 252 (2012), 3365–3380.
Tang, X. H., Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust Math Soc., 98 (2015), 104–116.
Tang, X. H., Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015), 715–728.
Tang, X. H. and Cheng, B. T., Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 2016 261(4), 2384–2402.
Tang, X. H. and Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017), 4973–5002.
Tang, X. H. and Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017) 110.
Vaira, G., Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263–297.
Willem, M., Minimax Theorems, Birkhäuser, Boston, 1996.
Zhang, X. and Ma, S. W., Multi-bump solutions of Schrödinger-Poisson equations with steep potential well, Z. Angew. Math. Phys., 66 (2015), 1615–1631.
Zhao, L. G. and Zhao, F. K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150–2164.
Zou, W. M., Sign-Changing Critical Point Theory, Springer, New York, 2008.