View More View Less
  • 1 Central South University, Changsha, Hunan 410083, P. R. China
  • | 2 Central South University, Changsha, Hunan 410083, P. R. China
  • | 3 Central South University, Changsha, Hunan 410083, P. R. China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

This paper is devoted to study the following Schrödinger-Poisson system {Δu+(λa(x)+b(x))u+K(x)ϕu=f(u),x3,Δϕ=4πK(x)u2,x3, where λ is a positive parameter, aC(R3,R+) has a bounded potential well Ω = a−1(0), bC(R3, R) is allowed to be sign-changing, KC(R3, R+) and fC(R, R). Without the monotonicity of f(t)=/|t|3 and the Ambrosetti-Rabinowitz type condition, we establish the existence and exponential decay of positive multi-bump solutions of the above system for λΛ¯, and obtain the concentration of a family of solutions as λ →+∞, where Λ¯>0 is determined by terms of a, b, K and f. Our results improve and generalize the ones obtained by C. O. Alves, M. B. Yang [3] and X. Zhang, S. W. Ma [38].

  • [1]

    Alves, C. O. and Souto, M. A. S., Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254(4) (2013), 19771991.

    • Search Google Scholar
    • Export Citation
  • [2]

    Alves, C. O. and Souto, M. A. S., Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 11531166.

    • Search Google Scholar
    • Export Citation
  • [3]

    Alves, C. O. and Yang, M. B., Existence of positive multi-bump solutions for a Schrödinger-Poisson system in R3, Discrete Contin. Dyn. Syst., 36 (2016), 58815910.

    • Search Google Scholar
    • Export Citation
  • [4]

    Benci, V. and Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283293.

    • Search Google Scholar
    • Export Citation
  • [5]

    Benci, V. and Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409420.

    • Search Google Scholar
    • Export Citation
  • [6]

    Benguria, R., Brezis, H. and Lieb, E. H., The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167180.

    • Search Google Scholar
    • Export Citation
  • [7]

    Catto, I. and Lions, P. L., Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and suffcient condition for the stability of general molecular system, Comm. Partial Differential Equations, 17 (1992), 10511110.

    • Search Google Scholar
    • Export Citation
  • [8]

    Cerami, G. and Vaira, G., Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521543.

    • Search Google Scholar
    • Export Citation
  • [9]

    Chen, S. T. and Tang, X. H., Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in R3, Z. Angew. Math. Phys., 67 (2016), 118.

    • Search Google Scholar
    • Export Citation
  • [10]

    Chen, S. T. and Tang, X. H., Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017), 363383.

    • Search Google Scholar
    • Export Citation
  • [11]

    Chen, S. T. and Tang, X. H., Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition, Comput. Math. Appl., 74 (2017), 446458.

    • Search Google Scholar
    • Export Citation
  • [12]

    Chen, S. T. and Tang, X. H., Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential, Appl. Math. Lett., 67 (2017), 4045.

    • Search Google Scholar
    • Export Citation
  • [13]

    del Pino, D. and Felmer, P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121137.

    • Search Google Scholar
    • Export Citation
  • [14]

    Ding, Y. H. and Tanaka, K., Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscr. Math., 112 (2003), 109135.

    • Search Google Scholar
    • Export Citation
  • [15]

    T. D’Aprile and Mugnai, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb. Sect. A, 134 (2004), 893906.

    • Search Google Scholar
    • Export Citation
  • [16]

    He, X. M. and Zou, W. M., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012) 023702.

    • Search Google Scholar
    • Export Citation
  • [17]

    Ianni, I. and Ruiz, D., Ground and bound states for a static Schrödinger-Poisson-Slater problem, Commun. Contemp. Math., 14 (2012) 1250003.

    • Search Google Scholar
    • Export Citation
  • [18]

    Li, F. Y., Li, Y. H. and Shi, J. P., Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16(06) (2014) 1450036.

    • Search Google Scholar
    • Export Citation
  • [19]

    Li, G. B., Peng, S. J. and Yan, S. S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12(06) (2010), 10691092.

    • Search Google Scholar
    • Export Citation
  • [20]

    Lieb, E. H., Thomas-Fermi and related theories and molecules, Rev. Modern Phys., 53 (1981), 603641.

  • [21]

    Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. of Math., 118 (1983), 349374.

    • Search Google Scholar
    • Export Citation
  • [22]

    Lieb, E. H. and Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14. AMS, 1997.

  • [23]

    Lions, P. L., Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1984), 3397.

  • [24]

    Jiang, Y. and Zhou, H. S., Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251(3) (2011), 582608.

  • [25]

    Markowich, P., Ringhofer, C. and Schmeiser, C., Semiconductor Equations, Springer-Verlag, New York, 1990.

  • [26]

    Miranda, C., Un’ osservazione su un teorema di Brouwer, Bol. Un. Mat. Ital., 3 (1940), 57.

  • [27]

    Ruiz, D., On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198(1) (2010), 349368.

    • Search Google Scholar
    • Export Citation
  • [28]

    Shuai, W., Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations, 259 (2015), 12561274.

    • Search Google Scholar
    • Export Citation
  • [29]

    Simon, B., Schrödinger semigroups, Bull. Am. Math. Soc. (N.S), 7 (1981), 447526.

  • [30]

    Sun, J. T., Chen, H. B. and Nieto, J. J., On ground state solutions for some non-autonomous Schröinger-Maxwell systems, J. Differential Equations, 252 (2012), 33653380.

    • Search Google Scholar
    • Export Citation
  • [31]

    Tang, X. H., Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust Math Soc., 98 (2015), 104116.

  • [32]

    Tang, X. H., Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015), 715728.

  • [33]

    Tang, X. H. and Cheng, B. T., Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 2016 261(4), 23842402.

    • Search Google Scholar
    • Export Citation
  • [34]

    Tang, X. H. and Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017), 49735002.

    • Search Google Scholar
    • Export Citation
  • [35]

    Tang, X. H. and Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017) 110.

    • Search Google Scholar
    • Export Citation
  • [36]

    Vaira, G., Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263297.

  • [37]

    Willem, M., Minimax Theorems, Birkhäuser, Boston, 1996.

  • [38]

    Zhang, X. and Ma, S. W., Multi-bump solutions of Schrödinger-Poisson equations with steep potential well, Z. Angew. Math. Phys., 66 (2015), 16151631.

    • Search Google Scholar
    • Export Citation
  • [39]

    Zhao, L. G. and Zhao, F. K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 21502164.

    • Search Google Scholar
    • Export Citation
  • [40]

    Zou, W. M., Sign-Changing Critical Point Theory, Springer, New York, 2008.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)