View More View Less
  • 1 The Islamia University Bahawalpur, Bahawalpur-631000, Pakistan
  • | 3 The Islamia University Bahawalpur, Bahawalpur-631000, Pakistan
  • | 1 Government Degree College, Lodhran, Punjab, Pakistan
  • | 2 Tanta University, Tanta, Egypt
  • | 3 Government S. A. Post-Graduate College, Dera Nawab Sahib, Punjab, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We exhibit a general family of distributions named “Kumaraswamy odd Burr G family of distributions” with four additional parameters to generalize any existing baseline distribution. Some statistical properties of the family are derived, including rth moments, mth incomplete moments, moment generating function and entropies. The parameters of the family are estimated by the maximum likelihood (ML) method for complete sam- ples as well as censored samples. Some sub-models of the family are considered and it is noted that their density functions can be symmetric, left-skewed, right-skewed, unimodal, bimodal and their hazard rate functions can be increasing, decreasing, bathtub, upside- down bathtub and J-shaped. Simulation is carried out for one of the sub-models to check the asymptotic behavior of the ML estimates. Applications to reliability (complete and censored) data are carried out to check the usefulness of some sub-models of the family.

  • [1]

    Alizadeh, M., Cordeiro, G. M., Abrao, D. C. Nascimento, A. D. C., Lima, M. do C. S., and Ortega, Edwin, M. M, Odd-Burr generalized family of distributions with some applications, Journal of statistical computation and simulation, 87 (2016), 367389.

    • Search Google Scholar
    • Export Citation
  • [2]

    Alizadeh, M., Emadi, M. I., Doostparast, M., Cordeiro, G. M., Ortega, E. M. M. and Pescim, R. R., A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications, Hacettepa J Math Stat, 44 (2014), 1491U-1512.

    • Search Google Scholar
    • Export Citation
  • [3]

    Amini, M., MirMostafaee, S. M. T. K. and Ahmadi, J. Log-gamma-generated families of distributions, Statistics, 48 (2014), 913932.

  • [4]

    Birnbaum, Z. W. and Saunders, S. C. Estimation for a family of life distributions with applications to fatigue, Journal of Applied Probability, 6 (1969), 328347.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bourguignon, M., Silva, R. B. and Cordeiro, G. M., The Weibull-G family of probability distributions, Journal of Data Science, 12 (2014), 5368.

    • Search Google Scholar
    • Export Citation
  • [6]

    Burr, I. W., Cumulative frequency functions, Annals of Mathematical Statistics, 13 (1942), 215232.

  • [7]

    Cordeiro, G. M., Ortega, E. M. M. and da Cunha, D. C. C., The exponentiated generalized class of distributions, Journal of Data Science, 11 (2013), 127.

    • Search Google Scholar
    • Export Citation
  • [8]

    Cordeiro, G. M. and de Castro, M., A new family of generalized distributions, Journal of Statistical Computation and Simulation, 81 (2011), 883893.

    • Search Google Scholar
    • Export Citation
  • [9]

    Cordeiro, G. M., Alizadeh, M. and Pinho, L. G. B., The exponentiated odd log-logistic family of distributions: Properties and applications, submitted.

    • Search Google Scholar
    • Export Citation
  • [10]

    Da Cruz, J. N., Cordeiro, G. M., Ortega, E. M. M. and Alizadeh, M., A new family of distributions: Theory and applications in survival analysis, submitted.

    • Search Google Scholar
    • Export Citation
  • [11]

    Delignette-Muller, M. L. and Dutang, C., fitdistrplus: An R Package for Fitting Distributions, Journal of Statistical Software, 64 (2015), 134.

    • Search Google Scholar
    • Export Citation
  • [12]

    Eugene, N., Lee, C. and Famoye, F., Beta-normal distribution and its applications, Communications in Statistics-Theory and Methods, 31 (2002), 497512.

    • Search Google Scholar
    • Export Citation
  • [13]

    Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, Sixth ed. Academic Press, San Diego, (2000).

  • [14]

    Gupta, R. C., Gupta, R. D., Proportional reversed hazard rate model and its applications, Journal of Statistical Planning and Inference 137 (2007), 35253536.

    • Search Google Scholar
    • Export Citation
  • [15]

    Gupta, R. C., Gupta, P. L. and Gupta R. D., Modeling failure time data by Lehmann alternatives, Communications in statistics-Theory and Methods, 27 (1998), 887904.

    • Search Google Scholar
    • Export Citation
  • [16]

    Lawless, F. J., Statistical Models and Methods for Lifetime Data, University Of Waterloo A John Wiley and Sons, Inc, Page 143, 2003.

  • [17]

    Jones, M. C., Families of distributions arising from distributions of order statistics, Test, 13 (2004), 143.

  • [18]

    Bader, M. and Priest, A., Statistical aspects of fibre and bundle strength in hybrid composites, Progress in science and engineering of composites, (1982), 11291136.

    • Search Google Scholar
    • Export Citation
  • [19]

    Ristić, M. M. and Balakrishnan, N., The gamma-exponentiated exponential distribution, Journal of Statistical Computation and Simulation, 82 (2012), 11911206.

    • Search Google Scholar
    • Export Citation
  • [20]

    Rodriguez, R. N., A guide to Burr Type XII distributions, Biometrika, 64 (1977), 129134.

  • [21]

    Shaked, M., and Shanthikumar, J. G. Stochastic Orders and Their Applications, Academic Press, New York, 1994.

  • [22]

    Zimmer W. J. , Keats J. B. and Wang F. K., The Burr XII distribution in reliability analysis, Journal of quality technology, 30 (1998), 386394.

    • Search Google Scholar
    • Export Citation
  • [23]

    Zografos, K. and Balakrishnan, N., On families of beta and generalized gammagenerated distributions and associated inference, Statistical Methodology, 6 (2009), 344362.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)