View More View Less
  • 1 University of Texas at Arlington, Arlington, TX 76019, U.S.A
  • | 2 Technische Universität Chemnitz, Germany
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In the Euclidean plane, the Erdős-Mordell inequality indicates that the sum of distances of an interior point of a triangle T to its vertices is larger than or equal to twice the sum of distances to the sides of T. We extend this theorem to arbitrary (normed or) Minkowski planes, and we generalize in an analogous way some other related inequalities, e.g. referring to polygons. We also derive Minkowskian analogues of Erdős-Mordell inequalities for tetrahedra and n-dimensional simplices. Finally, some related inequalities are obtained which additionally involve total edge-lengths of simplices.

  • [1]

    Alonso, J., Martiniand H., S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes Math, 83 (2012), 153-189.

    • Search Google Scholar
    • Export Citation
  • [2]

    Altshiller-Court, N., Modern Pure Solid Geometry, Chelsea Publ. Co., New York, 1964.

  • [3]

    Andrew, A. D.and Ghandehari, M. A., An inequality for a sum of distances, Congressus Numerantium, 50 (1985), 31-35.

  • [4]

    Benson, R. V., Euclidean Geometry and Convexity, McGraw-Hill, 1966.

  • [5]

    Boltyanski, V., Martini, H.and Soltan, V. P., Geometric Methods and Optimization Problem, Kluwer, Dordrecht et al., 1999.

  • [6]

    Bottema, O., Djodjević, R. Ž., Janić, R. R., Mitrinović, D. S.and Vasić, P. M., Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, 1969.

    • Search Google Scholar
    • Export Citation
  • [7]

    Busemann, H., The foundations of Minkowski geometry, Comm. Math. Helv., 24 (1950), 156-187.

  • [8]

    Chakerian, G. D.and Ghandehari, M., The Fermat problem in Minkowski spaces, Geom. Dedicata, 17 (1985), 227-238.

  • [9]

    Chakerian, G. D.and Ghandehari, M. A., The sum of distances determined by points on a sphere, Discrete Geometry and Convexity (New York, 1982), Ann. New York Acad. Sci. 440, New York, 1985, pp. 88-91.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dar, S.and Gueron, S., The weighted Erdős-Mordell inequality, Amer. Math. Monthly, 108 (2001), 165-168.

  • [11]

    D}orrie, H., Mathematische Miniaturen, Ferdinand Hirt, Breslau, 1943.

  • [12]

    Erdős, P., Mordell, L. J.and Borrow, D. F., Solution to problem 3470, Amer. Math. Monthly, 44 (1937), no. 4, 252-252.

  • [13]

    Gerber, L., The orthocentric simplex as an extreme simplex, Pacific J. Math., 56 (1975), 97-111.

  • [14]

    Gueron, S.and Shafrir, I., A weighted Erdős-Mordell inequality for polygons, Amer. Math. Monthly, 112 (2005), 257-263.

  • [15]

    Kazarinoff, N. D., D. K. Kazarinoff's inequality for tetrahedra, Michigan Math. J., 4 (1957), 99-104.

  • [16]

    Kazarinoff, N. D., Geometric Inequalities, MAA New Mathematical Library, 1961.

  • [17]

    Martini, H.and Swanepoel, K. J., The geometry of Minkowski spaces - a survey, Part II, Expositiones Math., 22 (2004), no. 2, 93-93.

  • [18]

    Martini, H., Swanepoel, K. J.and Weiss, G., The geometry of Minkowski spaces - a survey, Part I, Expositiones Math., 19 (2001), no. 2, 97-97.

    • Search Google Scholar
    • Export Citation
  • [19]

    McMullen, P., Simplices with equiareal faces, Discrete Comput. Geom., 24 (2000), 397-411.

  • [20]

    Minkowski, H., Sur les propriétés des nombres entiers qui sont dérivées de l'intuition de l'espaces, Nouvelles Annales de Mathématiques, 3e Série, 15 (1896); also in: Ges. Abh., 1, Band XII, pp. 271-277.

    • Search Google Scholar
    • Export Citation
  • [21]

    Mitrinovic, D. S., Pecaric, J.and Volenec, V., Recent Advances in Geometric Inequalities, Springer, 1981.

  • [22]

    Petty, C. M., On the geometry of the Minkowski plane, Riv. Mat. Univ. Parma, 6 (1955), 269-292.

  • [23]

    Riemann, B., Über die Hypothesen, welche der Geometrie zu Grunde liegen, Abh. Königl. Ges. Wiss. Göttingen, 13 (1868).

  • [24]

    Spira, R., The isogonic and Erdős-Mordell points of a simplex, Amer. Math. Monthly, 78 (1971), 856-864.

  • [25]

    Thompson, A. C., Minkowski Geometry, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1996.

  • [26]

    Valentine, F. A., Convex Sets, Krieger, 1976.