View More View Less
  • 1 The Hebrew University of Jerusalem, Jerusalem 91904, Israel
  • | 2 Rutgers University, New Brunswick, NJ 08854, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We analyze the strong polarized partition relation with respect to several cardinal characteristics and forcing notions of the reals. We prove that random reals (as well as the existence of real-valued measurable cardinals) yield downward negative polarized relations.

  • [1]

    Blass, A., Combinatorial cardinal characteristics of the continuum, Handbook of set theory, Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395-489. MR 2768685

    • Search Google Scholar
    • Export Citation
  • [2]

    Blass, A.,and Shelah, S., There may be simple P@1 - and P@2 -points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic, 33 (1987), no. 3, 213-213.

    • Search Google Scholar
    • Export Citation
  • [3]

    Erdős, P., Hajnal, A.and Rado, R., Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar., 16 (1965), 93-196.

  • [4]

    Fremlin, D. H., Real-valued-measurable cardinals, Set theory of the reals (Ramat Gan, 1991), Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 151-304.

    • Search Google Scholar
    • Export Citation
  • [5]

    Fuchino, S., Greenberg, N.and Shelah, S., Models of real-valued measurability, Ann. Pure Appl. Logic, 142 (2006), no. 1-3, 380-397.

  • [6]

    Garti, S.and Shelah, S., Combinatorial Aspects of the Splitting Number, Ann. Comb., 16 (2012), no. 4, 709-709.

  • [7]

    Garti, S.and Shelah, S., Partition calculus and cardinal invariants, J. Math. Soc. Japan, 66 (2014), no. 2, 425-425.

  • [8]

    Garti, S.and Shelah, S., Open and solved problems concerning polarized partition relations, Fund. Math., 234 (2016), no. 1, 1-1.

  • [9]

    Gitik, M.and Shelah, S., Forcings with ideals and simple forcing notions, Israel J. Math., 68 (1989), no. 2, 129-129.

  • [10]

    Jones, A. L., On a result of Szemerédi, J. Symbolic Logic, 73 (2008), no. 3, 953-953.

  • [11]

    Maharam, D., On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 108-111.

  • [12]

    Solovay, R. M., Real-valued measurable cardinals, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., 1971, pp. 397-428.

    • Search Google Scholar
    • Export Citation