View More View Less
  • 1 Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany
  • | 2 Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Given an integer k ≧ 2 and a real number γ ∈ [0; 1], which graphs of edge density γ contain the largest number of k-edge stars? For k = 2 Ahlswede and Katona proved that asymptotically there cannot be more such stars than in a clique or in the complement of a clique (depending on the value of γ). Here we extend their result to all integers k ≧ 2.

  • [1]

    Ábrego, B.M., Fernández-Merchant, S., Neubauer,M. G. and Watkins,W., Sum of squares of degrees in a graph, JIPAM. J. Inequal. Pure Appl. Math., 10 (2009), no. 3. Article 64, 34.

    • Search Google Scholar
    • Export Citation
  • [2]

    Ahlswede, R.and Katona, G. O. H., Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar., 32 (1978), no. (1-2), 97-120.

    • Search Google Scholar
    • Export Citation
  • [3]

    Conlon, D.and Lee, J., Finite re ection groups and graph norms, Adv. Math., 315 (2017), 130-165.

  • [4]

    Katona, G., A theorem of finite sets, Theory of graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 187-207.

  • [5]

    Kenyon, R., Radin, Ch., Ren, K.and Sadun, L., Multipodal structure and phase transitions in large constrained graphs, J. Stat. Phys., 168 (2017), no. 2, 233-258.

    • Search Google Scholar
    • Export Citation
  • [6]

    Kim, J. H., Lee, Ch.and Lee, J., Two approaches to Sidorenko's conjecture, Trans. Amer. Math. Soc., 368 (2016), no. 7, 5057-5074.

  • [7]

    Kruskal, J. B., The number of simplices in a complex, Mathematical optimization techniques, Univ. of California Press, Berkeley, Calif., 1963, pp. 251-278.

    • Search Google Scholar
    • Export Citation
  • [8]

    Li, J. L. X. and Szegedy, B., On the logarithimic calculus and Sidorenko's conjecture, available at arXiv:1107.1153.

  • [9]

    Lovász, L., Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012.

    • Search Google Scholar
    • Export Citation
  • [10]

    Nagy, D. T., On the number of 4-edge paths in graphs with given edge density, Combin. Probab. Comput., 26 (2017), no. 3, 431-447.

  • [11]

    Nikiforov, V., The number of cliques in graphs of given order and size, Trans. Amer. Math. Soc., 363 (2011), no. 3, 1599-1618.

  • [12]

    Razborov, A. A., Flag algebras, J. Symbolic Logic, 72 (2007), no. 4, 1239-1282.

  • [13]

    Razborov, A. A., On the minimal density of triangles in graphs, Combin. Probab. Comput., 17 (2008), no. 4, 603-608.

  • [14]

    Reiher, Chr. , The clique density theorem, Ann. of Math. (2), 184 (2016), no. 3, 683-707.

  • [15]

    Szegedy, B., Relative entropy and Sidorenko's conjecture, available at arXiv:1406.6738.

  • [16]

    Wagner, S.and Wang, H., On a problem of Ahlswede and Katona, Studia Sci. Math. Hungar., 46 (2009), no. 3, 423-435.