View More View Less
  • 1 Qufu Normal University Shandong, Qufu 273165, China
  • | 2 Yili Normal University Xinjiang, Yining 835000, China
  • | 3 Qufu Normal University Shandong, Qufu 273165, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we introduce comatrix group corings and define the generalized Galois group corings. Then we give the generalized Galois group coring Structure Theorem.

  • [1]

    Kaoutit, L. E. and Torrecillas, J. G., Comatrix corings: Galois corings, descent theory, and structure Theorem for cosemisimple corings, Math. Z., 224 (2003), 887-906.

    • Search Google Scholar
    • Export Citation
  • [2]

    Torrecillas, J. G., Comonads and Galois corings, Appl. Categor. Struct., 14 (2006), 579-598.

  • [3]

    Caenepeel, S., Janssen, K. and Wang, S. H., Group Corings, Appl. Categor. Struct., 16 (2008), 65-96.

  • [4]

    Caenepeel, S., Galois corings from the descent theory point of view, Fields Inst. Comm., 43 (2004), 163-186.

  • [5]

    Caenepeel, S., Veroruysse, J. and Wang, S.H., Morita Theory for corings and cleft entwining structures, J. Algebra, 276 (2004), 210-235.

    • Search Google Scholar
    • Export Citation
  • [6]

    Caenepeel, S., De Groot, E. and Veroruysse, J., Galois theory for comatrix corings: descent theory, Morita theory, Frobenius and separability properties, Trans. Amer. Math. Soc, 359 (2007), 185-226.

    • Search Google Scholar
    • Export Citation
  • [7]

    Abuhlail, J., Morita contexts for corings and equivalence, in "Hopf algebras in noncommutative geometry and physics" (S. Caenepeel and F. Van Oystaeyen, eds.), Lect. Notes Pure Appl. Math. 239, Dekker, New York, 2004.

    • Search Google Scholar
    • Export Citation
  • [8]

    Sweedler, M. E., The predual theorem to the jacobson-bourbaki theorem, Trans. Amer. Math. Soc., 213 (1975), 391-406.

  • [9]

    Brzezinski, T. and Majid, S., Coalgebra bundles, Comm. Math. Phys., 191(2) (1998) 467-492.

  • [10]

    Brzezinski, T., The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties, Algebr. Represent. Theory, 5 (2002), 389-410.

    • Search Google Scholar
    • Export Citation
  • [11]

    Brzezinski, T. and Torrecillas, J. G., On comtrix corings and bimodules, KTheory, 29 (2003), 101-115.

  • [12]

    Wisbauer, R., On the category of comodules over corings, in “Mathematics and mathematics education (Bethlehem, 2000)”, World Sci. Publishing, River Edge, NJ, 2002, 325-336.

    • Search Google Scholar
    • Export Citation
  • [13]

    Chen, Q. G. and Wang, D.G., A Class of Coquasitriangular Hopf Group Algebras, Comm. Algebra, 44 (2016), 310-335.

  • [14]

    Chen, Q. G. and Wang, D. G., Constructing Quasitriangular Hopf algebras, Comm. Algebra, 43 (2015), 1698-1722.

  • [15]

    Wang, D. G. and Chen, Q.G., Separable functors in group coring, Osaka. J. Math., 52 (2015), 475-493.

  • [16]

    Chen, Q. G. and Wang, D. G., Induction functors for group corings, Kodai Math. J., 38 (2015), 155-165.

  • [17]

    Chen, Q. G., Wang, D. G. and Kang, X. D., Twisted partial coactions of Hopf algebras, Front. Math. China, 12 (2017), 63-86.

  • [18]

    Chen, Q. G., Wang, D. G., Liu, M., Morita theory for group corings, Hacet. J. Math. Stat., 44 (2015), 1333-1350.