View More View Less
  • 1 UTP University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Any sequence of 4-dimensional cubes of total volume not greater than 1/8 can be online packed into the unit cube.

  • [1]

    Brubach, B., Improved online square-into-square packing, 2014, available at URL http://arxiv.org/abs/1401.5583

  • [2]

    Brubach, B., Improved Bound for Online Square-into-Square Packing, Approximation and Online Algorithms - 12th International Workshop, WAOA 2014, Wroclaw, Poland, September 11-12, 2014, Lecture Notes in Computer Science, Vol. 8952, 2015, 47-58.

    • Search Google Scholar
    • Export Citation
  • [3]

    Coffman, E. G., Jr., Csirik, J., Galambos, G., Martello, S. and Vigo, D., Bin packing approximation algorithms: survey and classification, 455-531, Handbook of Combinatorial Optimization, Springer, New York, 2013.

    • Search Google Scholar
    • Export Citation
  • [4]

    Fekete, S., Hoffman, H-F., Online square-into-square packing, Approximation, randomization, and combinatorial optimization, 126-141, Lecture Notes in Computer Science, 8096, Springer, Heidelberg, 2013.

    • Search Google Scholar
    • Export Citation
  • [5]

    Han, X., Iwama, K. and Zhang, G., Online removable square packing, Theory of Comp. Systems, 43 (1) (2008) 38-55.

  • [6]

    Januszewski, J. and Lassak, M., On-line packing sequences of cubes in the unit cube, Geom. Dedicata, 67 (1997) 285-293.

  • [7]

    Lassak, M., A survey of algorithms for on-line packing and covering by sequences of convex bodies, in: Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., Budapest (1997) 129-157.

    • Search Google Scholar
    • Export Citation
  • [8]

    Meir, A. and Moser, L., On packing of squares and cubes, J. Comb. Theory 5, (1968) 126-134.