View More View Less
  • 1 Federal University, Rio de Janeiro, RJ, Brazil
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

If a Banach-space operator has a complemented range, then its normed-space adjoint has a complemented kernel and the converse holds on a re exive Banach space. It is also shown when complemented kernel for an operator is equivalent to complemented range for its normed-space adjoint. This is applied to compact operators and to compact perturbations. In particular, compact perturbations of semi-Fredholm operators have complemented range and kernel for both the perturbed operator and its normed-space adjoint.

  • [1]

    Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer-Springer, New York, 2004.

  • [2]

    Brown, A. and Pearcy, C., Introduction to Operator Theory I - Elements of Functional Analysis, Springer, New York, 1977.

  • [3]

    Campbell, S. L. and Faulkner, G. D., Operators on Banach spaces with complemented ranges, Acta Math. Acad. Sci. Hungar., 35 (1980), 123-128.

    • Search Google Scholar
    • Export Citation
  • [4]

    Conway, J. B., A Course in Functional Analysis, 2nd edn. Springer, New York, 1990.

  • [5]

    Cross, R. W. On the perturbation of unbounded linear operators with topologically complemented Ranges, J. Funct. Anal., 92 (1990), 468-473.

    • Search Google Scholar
    • Export Citation
  • [6]

    Duggal, B. P. and Kubrusly, C. S., Perturbation of Banach space operators with a complemented range, Glasgow Math. J., 59 (2017), 659-671.

    • Search Google Scholar
    • Export Citation
  • [7]

    Goldberg, S., Perturbations of semi-Fredholm operators with complemented range, Acta Math. Hungar., 54 (1989), 177-179.

  • [8]

    Harte, R., Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.

  • [9]

    Heuser, H. G., Functional Analysis, Wiley, Chichester, 1982.

  • [10]

    Holub, J. R., On perturbation of operators with complemented range, Acta Math. Hungar., 44 (1984), 269-273.

  • [11]

    Kalton, N. J., The complemented subspace problem revisited, Studia Math., 188 (2008), 223-257.

  • [12]

    Kato, T., Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin, 1980; reprinted: 1995.

  • [13]

    Kubrusly, C. S., Fredholm theory in Hilbert space - a concise introductory exposition, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 153-177.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kubrusly, C. S., The Elements of Operator Theory, Birkhäuser-Springer, New York, 2011.

  • [15]

    Kubrusly, C. S., Spectral Theory of Operators on Hilbert Spaces, Birkhäuser-Springer, New York, 2012.

  • [16]

    Kubrusly, C. S. and Duggal, B. P., Weyl spectral identity and biquasitriangularity, Proc. Edinb. Math. Soc., 59 (2016), 363-375.

  • [17]

    Kubrusly, C. S. and Duggal, B. P., Upper-lower and left - right semi-Fredholmness, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 217-233.

    • Search Google Scholar
    • Export Citation
  • [18]

    Lindenstrauss, J. and Tzafriri, L., On the complemented subspaces problem, Israel J. Math., 9 (1971), 263-269.

  • [19]

    Megginson, R., An Introduction to Banach Space Theory, Springer, New York, 1998.

  • [20]

    Muller, V., Spectral Theory of Linear Operators - and Spectral Systems in Banach Algebras, 2nd edn. Birkhaäuser, Basel, 2007.

  • [21]

    Schechter, M., Principles of Functional Analysis, 2nd edn. Graduate Studies in Mathematics Vol. 36, Amer. Math. Soc., Providence, 2002.

    • Search Google Scholar
    • Export Citation
  • [22]

    Taylor, A. E., Introduction to Functional Analysis, Wiley, New York, 1958.