View More View Less
  • 1 Statistics and Computer Science, Hyderabad 500046, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We characterize the normal distribution based on the Q-independence of linear forms based on infinite sequences of Q-independent random variables.

  • [1]

    Bernstein, S. N., On one property of Gaussian law, Trudy Leningr. Politekh. Instituta, 3, 21-22 (in Russian).

  • [2]

    Cramer, H., Uber eine eigenschaft der normalen verteilungsfunction, Math. Z., 41, 405-414.

  • [3]

    Darmois, G., Analyse générale des liaisons stochastiques, Rev. Inst. Int. Statist., 21, 2-8.

  • [4]

    Ibragimov, I. A., On the Skitovich-Darmois-Ramachandran theorem, Theory Probab. Appl., 57, 368-374.

  • [5]

    Kagan, A. M., Linnik, Yu.V. and Rao, C. R., Characterization Problems in Mathematical Statistics, Wiley, New York.

  • [6]

    Kagan, A. M. and Székely, G. J., An analytic generalization of independence and identical distributiveness, Statistics and Probability Letters, 110, 244-248.

    • Search Google Scholar
    • Export Citation
  • [7]

    Kotlarski, I. I., On some characterizations of probability distributions in Hilbert spaces, Annali di Math. Pura. et Appl., 74, 129-134.

    • Search Google Scholar
    • Export Citation
  • [8]

    Kotlarski, I. I., On characterizing the gamma and the normal distribution, Pacific J. Math., 20, 69-76.

  • [9]

    Linnik, Yu. V., Decomposition of Probability Distributions, Ed. S. J. Taylor, Dover Publications Inc; Oliver and Boyd, Edinburgh-London, xii+242pp.

    • Search Google Scholar
    • Export Citation
  • [10]

    Maroinkiewioz, J., Sur une propriété de la loi de Gauss, Math. Z., 44, 612-618.

  • [11]

    Miller, P. G., Characterizing the distribution of three independent n-dimensional random variables X1 , X2, X3 having analytic characteristic functions by the joint distribution of ( Xi + Xs , X2 + X3), Pacific J. Math., 34, 487-491.

    • Search Google Scholar
    • Export Citation
  • [12]

    Prakasa Rao, B. L. S., On a characterization of probability distributions on locally compact abelian Groups, Z. Wahr. verw. Geb., 9, 98-100.

    • Search Google Scholar
    • Export Citation
  • [13]

    PRAKASA Rao, B. L. S., Identifiability in Stochastic Models: Characterization of Probability Distributions, Academic Press, San Diego.

  • [14]

    PRAKASA Rao, B. L. S., Characterization of probability distributions through Qindependence, Teoria Veroyatnostei iee Primeneniya, 62, 415-420.

    • Search Google Scholar
    • Export Citation
  • [15]

    PRAKASA Rao, B. L. S., Characterization of probability distributions through linear forms of Q-conditional independent random variables, Sankhya Series A, 78, 221-230

    • Search Google Scholar
    • Export Citation
  • [16]

    Ramaohandran, B., Advanced Theory of Charcteristic Functions, Statistical Publishing Society, Calcutta, vii + 208 pp.

  • [17]

    Rao, C. R., Characterization of the distribution of random variables in linear structural relations, Sankhya, 28, 251-260.

  • [18]

    Rao, C. R., On some characterization of the normal law, Sankhya, 29, 1-14.

  • [19]

    Rao, C. R., Characterization of probability laws by linear functions, Sankhya, Series A, 33, 265-270.

  • [20]

    Sasvari, Z., Characterizing the distribution of the random variables X1, X2, X3 by the distribution of ( X1—X3, X2—X3), Prob. Theory. and Relat. Fields, 73, 43-49.

    • Search Google Scholar
    • Export Citation
  • [21]

    Skitovich, V. P., On a property of the normal distribution, Dokl. Akad. Nauk SSSR, 89, 217219 (in Russian).

  • [22]

    Skitovich, V. P., Linear forms in independent random variables and the normal distribution, Dokl. Akad. Nauk SSSR, Ser. Math., 18, 185-200 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [23]

    Vershik, A. M., Some characteristic properties of Gaussian stochastic processes, Theory Probab. Appl., 9, 353-356.