View More View Less
  • 1 Lorestan University, Khorramabad, Iran
  • | 2 Lomonosov Moscow State University, Moscow, Russia
  • | 3 Lorestan University, Khorramabad, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In present paper, we give some new reverses of the Young type inequalities which were established by X. Hu and J. Xue [7] via Kantorovich constant. Then we apply these inequalities to establish corresponding inequalities for the Hilbert-Schmidt norm and the trace norm.

  • [1]

    Ando, T., Matrix young inequalities, Oper. Theory Adv. Appl., 75 (1995), 33-38.

  • [2]

    Burqan, A. and Khandaqji, M., Reverses of Young type Inequalities, J. Math. Ineq ual, 9(1) (2015), 113-120.

  • [3]

    Bhatia, R., Matrix Analysis, Springer-Verlag, New York, (1997).

  • [4]

    Bhatia, R. and Parthasarathy, K. R., Positive definite functions and operator inequalities, Bulletin of the London Mathematical Society, 32. 2 (2000), 214-228.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bhatia, R. and Kittaneh, F., Notes on matrix arithmeticáĂŞgeometric mean inequalities, Linear Algebra and Its Applications, 308(1–3) (2000), 203-211.

    • Search Google Scholar
    • Export Citation
  • [6]

    Furuta, T., MiĆiĆ Hot, J., Peoarić, J. and Seo, Y., Mond-Pecarić method in operator inequalities, Element, Zagreb, 2005.

  • [7]

    Hu, X. and Xue, J., A note on reverses of Young type inequalities, Journal of Inequalities and Applications, 2015(1) (2015), 98.

  • [8]

    Hirzallah, O. and Kittaneh, F., Matrix Young inequalities for the Hilbert- Schmidt norm, Linear algebra and its applications, 308(1—3) (2000), 77-84.

    • Search Google Scholar
    • Export Citation
  • [9]

    Xing-Kai, H. U. Young type inequalities for matrices, J. East China Norm. Univ. Natur. Sci, 4 (2012), 12-17.

  • [10]

    Kittaneh, F. and Manasrah, Y., Improved Young and Heinz inequalities for matrices, Journal of Mathematical Analysis and Applications, 361(1) (2010), 262-269.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kittaneh, F. and Manasrah, Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59(9) (2011), 1031-1037.

  • [12]

    Kittaneh, F., On some operator inequalities, Linear algebra and its applications, 208 (1994), 19-28.

  • [13]

    Kosaki, H., ArithmeticâASgeometric mean and related inequalities for operators, Journal of functional analysis, 156(2) (1998), 429-451.

    • Search Google Scholar
    • Export Citation
  • [14]

    Liao, W. and Wu, J. and Zhao, J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math, 19(2) (2015), 467-479.

    • Search Google Scholar
    • Export Citation
  • [15]

    Liao, W. and Wu, J., Improved Young and Heinz inequalities with the Kantorovich constant. arXiv preprint arXiv:1506.00226, 2015.

  • [16]

    Nasiri, L. and Shakoori, M., A note on improved Young type inequalities with Kantorovich constant, J. Math. Stat., (2016).

  • [17]

    Nasiri, L. and Shakoori, M. and Liao, W., A note on the Young type inequalities, Int. J. Nonlin. Appl., 10(2) (2016), 559-570.

  • [18]

    Wu, J. and Zhao, J., Operator inequalities and reverse inequalities related to the Kittaneh-Manasrah inequalities, Linear and Multilinear Algebra, 62(7) (2014), 884-894.

    • Search Google Scholar
    • Export Citation
  • [19]

    Zuo, H. and Shi, G. and Fujii, M., Refined Young inequality with Kantorovich Constant, J. Math. Inequal, 5(4) (2011), 551-556.

  • [20]

    Zhan, X., Inequalities for unitarily invariant norms, SIAM journal on matrix analysis and applications, 20(2) (1998), 466-470.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)