View More View Less
  • 1 Southeast University, Nanjing 210096, China
  • 2 Universidade do Minho, Braga 4710-057, Portugal
  • 3 Qufu Normal University, Qufu, Shandong 273165, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The notion of core inverse was introduced by Baksalary and Trenkler for a complex matrix of index 1. Recently, the notion of pseudo core inverse extended the notion of core inverse to an element of an arbitrary index in *-rings; meanwhile, it characterized the core-EP inverse introduced by Manjunatha Prasad and Mohana for complex matrices, in terms of three equations. Many works have been done on classical generalized inverses of companion matrices and Toeplitz matrices. In this paper, we discuss existence criteria and formulae of the pseudo core inverse of a companion matrix over a *-ring. A {1,3}-inverse of a Toeplitz matrix plays an important role in that process.

  • [1]

    Baksalary, O. M. and Trenkler, G., Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681-697.

  • [2]

    Castro-Gonzalez, N., Chen, J. L. and Wang, L., Further results on generalized inverses in rings with involution, Electron. J. Linear Algebra, 30 (2015), 118-134.

    • Search Google Scholar
    • Export Citation
  • [3]

    CHEN, J . L., Zhu, H. H., Patrício, P. and Zhang, Y. L., Characterizations and representations of core and dual core inverses, Canad. Math. Bull., 60 (2017), 269-282.

    • Search Google Scholar
    • Export Citation
  • [4]

    Gao, Y. F. and Chen, J. L., Pseudo core inverses in rings with involution, Comm. Algebra, 46 (1) (2018), 38-50.

  • [5]

    Gao, Y. F., Chen, J. L. and Ke, Y. Y., *-DMP elements in *-semigroups and *-rings, Filomat, accepted.

  • [6]

    Gouveia, M.C., Generalized invertibility of Hankel and Toeplitz matrices, Linear Algebra Appl., 193 (1993), 95-106.

  • [7]

    Hartwig, R. E. and Shoaf, J., Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc., 24 (Series A) (1977), 10-34.

    • Search Google Scholar
    • Export Citation
  • [8]

    Li, T. T. and Chen J.L., Characterizations of core and dual core inverses in rings with involution, Linear Multilinear Algebra, 66 (2018), 717-730.

    • Search Google Scholar
    • Export Citation
  • [9]

    Malik, S. B., Rueda, L. and Thome, N., Further properties on the core partial order and other matrix partial orders, Linear Multilinear Algebra, 62 (2014), 1629-1648.

    • Search Google Scholar
    • Export Citation
  • [10]

    MANJUNATHA Prasad, K. and Mohana, K. S., Core-EP inverse. Linear Multilinear Algebra, 62 (2014), 792-802.

  • [11]

    Mosic, D., Core-EP pre-order of Hilbert space operators, Quaestiones Math., 41 (2018), 585-600.

  • [12]

    Patrício, P., The Moore-Penrose inverse of a companion matrix, Linear Algebra Appl., 437 (2012), 870-877.

  • [13]

    Patrício, P. and Puystjens, R., About the von Neumann regularity of triangular block matrices, Linear Algebra Appl., 332-334 (2001), 485-502.

    • Search Google Scholar
    • Export Citation
  • [14]

    Puystjens, R. and Gouveia, M. C., Drazin invertibility for matrices over an arbitrary ring, Linear Algebra Appl., 385 (2004), 105-116.

  • [15]

    Puystjens, R. and Hartwig, R. E., The group inverse of a companion matrix, Linear Multilinear Algebra, 43 (1997), 137-150.

  • [16]

    Rakić, D. S., Dinčić, N. Č. and Djordjević, D. S., Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl., 463 (2014), 115-133.

    • Search Google Scholar
    • Export Citation
  • [17]

    Robinson, D. W., Puystjens, R. and Van Geel, J., Categories of matrices with only obvious Moore-Penrose inverses, Linear Algebra Appl., 97 (1987), 93-102.

    • Search Google Scholar
    • Export Citation
  • [18]

    Wang, H. X., Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289-300.

  • [19]

    Xu, S. Z., Chen, J. L. and Zhang, X. X., New characterizations for core inverses in rings with involution, Front. Math. China, 12 (1) (2017), 231-246.

    • Search Google Scholar
    • Export Citation
  • [20]

    Zhu, H. H., Chen, J. L. and Patrício, P., Further results on the inverse along an element in semigroups and rings, Linear and Multilinear Algebra, 64 (2016), 393-403.

    • Search Google Scholar
    • Export Citation