View More View Less
  • 1 Persian Gulf University, Bushehr, 75169, Iran
  • | 2 Malayer University, Malayer, Iran
  • | 3 Benha University, Benha, Egypt
  • | 4 University of Hasselt, Belgium
  • | 5 Statistics and Computer Science Marquette University, Milwaukee, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.

  • [1]

    Aarset, A. S., How to identify a bathtub hazard rate, IEEE Transactions on Reliability, 36 (1987), 106108.

  • [2]

    Abdul-Moniem, I. B., Exponentiated Nadarajah and Haghighi exponential Dis-tribution, International Journal of Mathematical Analysis and Applications, 2 (2016), 6873.

    • Search Google Scholar
    • Export Citation
  • [3]

    Ahmed, A., Muhammed, H. Z. and Elbatal, I., A New Class of Extension Expo-nential Distribution, International Journal of Applied Mathematical Sciences, 8 (2015), 1330.

    • Search Google Scholar
    • Export Citation
  • [4]

    Alizadeh, M., Afshari, M., Hosseini, B. and Ramires, T. G. Extended Exp-G family of distributions: Properties and Applications, Communication in statistics, simulation and computation, DOI:10.1080/03610918.2018.1506027.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bourguignon, M., Lima, M. C. S., Leao, J., Nascimento, A. D. C., Pinho, L. G. B., and Almalki, S. J. and Yuan, J. A new modified Weibull distri-bution, Reliability Engineering (2013).

    • Search Google Scholar
    • Export Citation
  • [6]

    Cordeiro, G. M. A new generalized gamma distribution with applications, Amer-ican Journal of Mathematical and Management Sciences, 34 (2015), 309342.

    • Search Google Scholar
    • Export Citation
  • [7]

    Cordeiro, G. M., Aristizabal, D. W., Suarez, D. M. and Lozano, S., The Gamma Modified Weibull Distribution, Chilean Journal of Statistics, 6 (2015), 3748.

    • Search Google Scholar
    • Export Citation
  • [8]

    Cordeiro, G. M., Gomes, A. E., da-Silva, C. Q. and Ortega, E. M. M., The beta exponentiated Weibull distribution, Journal of Statistical Computation and Simulation, 83 (2013), 114138.

    • Search Google Scholar
    • Export Citation
  • [9]

    Cordeiro, G. M., Ortega, E. M. M. and Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347 (2010), 13171336.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dias, C. R. B. New continuous distributions applied to lifetime data and survival analysis, Doctoral thesis, Universidade Federal de Pernumbuco, Recife, 2016.

    • Search Google Scholar
    • Export Citation
  • [11]

    Elbatal, I., Asgharzadeh, A. and Sharafi, F., A new class of generalized power Lindley distribution, Journal of Applied Probability and Statistics, 10 (2015), 89116.

    • Search Google Scholar
    • Export Citation
  • [12]

    El Damcese, M. A. and Ramadan, D. A., Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution, International Journal of Computer Applications (2015), 125.

    • Search Google Scholar
    • Export Citation
  • [13]

    Glánzel, W., A characterization theorem based on truncated moments and its application to some distribution families, Mathematical Statistics and Prob-ability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, 1987, 75–84.

    • Search Google Scholar
    • Export Citation
  • [14]

    Glánzel, W., Some consequences of a characterization theorem based on truncated moments, Statistics: A Journal of Theoretical and Applied Statistics, 21 (4) (1990), 613618.

    • Search Google Scholar
    • Export Citation
  • [15]

    Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 6th Edition, Academic Press, San Diego, 2000.

  • [16]

    Gupta, R. D. and Kundu, D., Exponentiated exponential family; an alternative to gamma and Weibull, Biometrical Journal, 43 (2001), 117130.

    • Search Google Scholar
    • Export Citation
  • [17]

    Hamedani, G. G., On certain generalized gamma convolution distributions II, Technical Report, No. 484, MSCS, Marquette University, 2013.

    • Search Google Scholar
    • Export Citation
  • [18]

    Klein, J. P. and Moeschberger, M. L., Survival Analysis Techniques for Cen-sored and Truncated Data, Springer Verlag, New York, 1997.

  • [19]

    Lee, C., Famoye, F. and Olumolade, O., Beta-Weibull Distribution: Some Prop-erties and Applications to Censored Data, Journal of Modern Applied Statis-tical Methods, 6 (2007), 173186.

    • Search Google Scholar
    • Export Citation
  • [20]

    Lemonte, A. J., A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Computational Statistics & Data Analysis, 62 (2013), 149170.

    • Search Google Scholar
    • Export Citation
  • [21]

    Lemonte, A. J., Cordeiro, G. M. and Moreno A. G., A new useful threeparam-eter extension of the exponential distribution, Statistics, 50 (2016), 312337.

    • Search Google Scholar
    • Export Citation
  • [22]

    Lima, S. R. L., The half normal generalized family and kummaraswamy Nadarajah Haghighi distribution, Master thesis, Universidade Federal de Pernumbuco, 2015.

    • Search Google Scholar
    • Export Citation
  • [23]

    Mead, M., An Extended Pareto Distribution, Pakistan Journal of Statistics and Operation Research, 10 (2014): DOI: 10.18187/pjsor.v10i3.766.

    • Search Google Scholar
    • Export Citation
  • [24]

    Nadarajah, S. and Haghighi, F., An extension of the exponential distribution, Statistics: A Journal of Theoretical and Applied Statistics, 45 (2011), 543558.

    • Search Google Scholar
    • Export Citation
  • [25]

    Ortega, E. M. M., Lemonte, A. J., Silva, G. O. and Cordeiro, G. M., Newexible models generated by gamma random variables for lifetime modeling, Journal of Applied Statistics, 42 (2015), 21592179.

    • Search Google Scholar
    • Export Citation
  • [26]

    Singh, B. and Choudhary, N., The exponentiated Perks distribution, Interna-tional Journal of System Assurance Engineering and Management, 2016, DOI: 10.1007/s13198-016-0451-1.

    • Search Google Scholar
    • Export Citation
  • [27]

    Vedo Vatto, T., Nascimento, A. D. C., Miranda Filho, W. R., Lima, M. C. S., Pinho, L. G., and Cordeiro, G. M., Some computational and theoretical aspect of the exponentiated generalized Nadarajah-Haghighi distribution, Chilean journal of statistics, 2016, Published online.

    • Search Google Scholar
    • Export Citation