View More View Less
  • 1 University Ismail Qemali, Vlora, Albania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this paper first, we prove some new generalizations of Hermite-Hadamard type inequalities for the convex function f and for (s, m)-convex function f in the second sense in conformable fractional integral forms. Second, by using five new integral identities, we present some new Riemann-Liouville fractional trapezoid and midpoint type inequalities. Third, using these results, we present applications to f-divergence measures. At the end, some new bounds for special means of different positive real numbers and new error estimates for the trapezoidal and midpoint formula are provided as well. These results give us the generalizations of the earlier results.

  • [1]

    Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 5766.

  • [2]

    Abdeljawad, T., Horani, M. Al and Khalil, R., Conformable fractional semigroups of operators, J. Semigroup Theory Appl., 2015 (2015), Article 7, pp. 9.

    • Search Google Scholar
    • Export Citation
  • [3]

    Adams, R. A., Sobolev Spaces, Academic Press, New York 1975.

  • [4]

    Anderson, D. R. and Ulness, D. J., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2) (2015), 109137.

  • [5]

    Anderson, D. R., Taylor's formula and integral inequalities for conformable fractional derivatives, Contributions in Mathematics and Engineering, Springer, 2016, 2543.

    • Search Google Scholar
    • Export Citation
  • [6]

    Anderson, D. R., Second-order self-adjoint differential equations using a proportional-derivative controller, Comm. Appl. Nonlinear Anal., 24 (1) (2017), 1748.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chu, Y. M., Khan, M. A., Ali, T. and Dragomir, S. S., Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (93) (2017), pp. 12.

    • Search Google Scholar
    • Export Citation
  • [8]

    Csisźar, I., Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299318.

    • Search Google Scholar
    • Export Citation
  • [9]

    Dragomir, S. S., Two mappings in connection to Hadamard's inequality, J. Math. Anal. Appl., 167 (1) (1992), 4956.

  • [10]

    Dragomir, S. S. and Agarwal, R. P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (5) (1998), 9195.

    • Search Google Scholar
    • Export Citation
  • [11]

    Dragomir, S. S. and Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687696.

    • Search Google Scholar
    • Export Citation
  • [12]

    Dragomir, S. S. and Pearce, C. E. M., Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, 2000, http://rgmia.org/monographs/hemite_hadamard.html.

    • Search Google Scholar
    • Export Citation
  • [13]

    Dragomir, S. S., Pečarić, J. and Persson, L. E., Some inequalities of Hadamard type, Soochow J. Math., 21 (3) (1995), 335341.

  • [14]

    Erden, S. and Sarikaya, M. Z., New Hermite-Hadamard type inequalities for twice differentiable convex mappings via Green function and applications, Moroccan J. Pure Appl. Anal., 2 (2) (2016), 107117.

    • Search Google Scholar
    • Export Citation
  • [15]

    Hadamard, J., Étude sur les propriétés des fonctions entières et an particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171215.

    • Search Google Scholar
    • Export Citation
  • [16]

    Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes. Math., 48 (1) (1994), 100111.

  • [17]

    Hammad, M. A. and Khalil, K., Conformable fractional heat differential equations, Int. J. pure Appl. Math., 94 (2) (2014), 215221.

  • [18]

    Hammad, M. A. and Khalil, R., Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 13 (3) (2014), 177183.

    • Search Google Scholar
    • Export Citation
  • [19]

    Iyiola, O. S. and Nwaeze, E. R., Some new results on the new conformable fractional calculus with application using D'Alambert approach, Prog. Fract. Differ. Appl., 2 (2) (2016), 115122.

    • Search Google Scholar
    • Export Citation
  • [20]

    Khan, M. A., Ali, T., Dragomir, S. S. and Sarikaya, M. Z., Hermite-Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, DOI: 10.1007/s13398-017-0408-5.

    • Search Google Scholar
    • Export Citation
  • [21]

    Khan, M. A., Ali, T. and Khan, T. U., Hermite-Hadamard type inequalities with applications, Fasc. Math., 59 (2017), 5774.

  • [22]

    Khan, M. A., Chu, Y. M., Kashuri, A. and Liko, R., Herimte-Hadamard type fractional integral inequalities for MT (r;g,m,φ)-preinvex functions, J. Comput. Anal. Appl., 26 (8) (2019), 14871503.

    • Search Google Scholar
    • Export Citation
  • [23]

    Khan, M. A., Chu, Y. M., Kashuri, A., Liko, R. and Ali, G., Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Spaces, 2018, Article ID 6928130, pp. 9.

    • Search Google Scholar
    • Export Citation
  • [24]

    Khan, M. A., Khurshid, Y., Ali, T. and Rehman, N., Inequalities for three times differentiable functions, Punjab Univ. J. Math., 48 (2) (2016), 3548.

    • Search Google Scholar
    • Export Citation
  • [25]

    Khan, M. A., Khurshid, Y. and Ali, T., Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenian., 86 (1) (2017), 153164.

    • Search Google Scholar
    • Export Citation
  • [26]

    Khalil, R., Horani, M. Al, Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570.

    • Search Google Scholar
    • Export Citation
  • [27]

    Kirmaci, U. S., Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137146.

    • Search Google Scholar
    • Export Citation
  • [28]

    Kunt, M., Karapinar, D., Turhan, S. and İşcan, İ, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions, J. Inequal. Spec. Funct., 9 (1) (2018), 4557.

    • Search Google Scholar
    • Export Citation
  • [29]

    Leonardi, S. and Stará, J., Regularity results for the gradient of solutions of linear elliptic systems with VMO coefficients and L 1,λ data, Forum Math., 22 (5) (2010), 913940.

    • Search Google Scholar
    • Export Citation
  • [30]

    Leonardi, S. and Stará, J., Regularity up to the boundary for the gradient of solutions of linear elliptic systems with VMO coefficients and L 1,λ data, Complex Variables and Elliptic Equ., 56 (12) (2011), 10851098.

    • Search Google Scholar
    • Export Citation
  • [31]

    Leonardi, S. and Stará, J., Regularity results for solutions of a class of parabolic systems with measure data, Nonlinear Analysis, 75 (4) (2012), 20692089.

    • Search Google Scholar
    • Export Citation
  • [32]

    Liu, W., Wen, W. and Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766777.

    • Search Google Scholar
    • Export Citation
  • [33]

    Luo, C., Du, T. S., Khan, M. A., Kashuri, A. and Shen, Y., Some k-fractional integrals inequalities through generalized λϕm-MT-preinvexity, J. Comput. Anal. Appl., 27 (4) (2019), 690705.

    • Search Google Scholar
    • Export Citation
  • [34]

    Pearce, C. E. M., Pečarić, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 5155.

    • Search Google Scholar
    • Export Citation
  • [35]

    Roberts, A. W. and Varberg, D. E., Convex functions, Academic Press, New York 1973.

  • [36]

    Sarikaya, M. Z., Saglam, A. and Yildirim, H., On some Hadamard-type inequalities for h-convex functons, J. Math. Inequal., 2 (3) (2008), 335341.

    • Search Google Scholar
    • Export Citation
  • [37]

    Sarikaya, M. Z., Set, E., Yaldiz, H. and Başak, N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 24032407.

    • Search Google Scholar
    • Export Citation
  • [38]

    Set, E., Sarikaya, M. Z. and Gözpinar, A., Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., 26 (2) (2017), 221229.

    • Search Google Scholar
    • Export Citation
  • [39]

    Shioya, H. and Da-te, T., A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 3740.

    • Search Google Scholar
    • Export Citation
  • [40]

    Zhang, Y., Du, T. S., Wang, H., Shen, Y. J. and Kashuri, A., Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 49 (2018) (2018), pp. 30.

    • Search Google Scholar
    • Export Citation