View More View Less
  • 1 University Ismail Qemali, Vlora, Albania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this paper first, we prove some new generalizations of Hermite-Hadamard type inequalities for the convex function f and for (s, m)-convex function f in the second sense in conformable fractional integral forms. Second, by using five new integral identities, we present some new Riemann-Liouville fractional trapezoid and midpoint type inequalities. Third, using these results, we present applications to f-divergence measures. At the end, some new bounds for special means of different positive real numbers and new error estimates for the trapezoidal and midpoint formula are provided as well. These results give us the generalizations of the earlier results.

  • [1]

    Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 5766.

  • [2]

    Abdeljawad, T., Horani, M. Al and Khalil, R., Conformable fractional semigroups of operators, J. Semigroup Theory Appl., 2015 (2015), Article 7, pp. 9.

    • Search Google Scholar
    • Export Citation
  • [3]

    Adams, R. A., Sobolev Spaces, Academic Press, New York 1975.

  • [4]

    Anderson, D. R. and Ulness, D. J., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2) (2015), 109137.

  • [5]

    Anderson, D. R., Taylor's formula and integral inequalities for conformable fractional derivatives, Contributions in Mathematics and Engineering, Springer, 2016, 2543.

    • Search Google Scholar
    • Export Citation
  • [6]

    Anderson, D. R., Second-order self-adjoint differential equations using a proportional-derivative controller, Comm. Appl. Nonlinear Anal., 24 (1) (2017), 1748.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chu, Y. M., Khan, M. A., Ali, T. and Dragomir, S. S., Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (93) (2017), pp. 12.

    • Search Google Scholar
    • Export Citation
  • [8]

    Csisźar, I., Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299318.

    • Search Google Scholar
    • Export Citation
  • [9]

    Dragomir, S. S., Two mappings in connection to Hadamard's inequality, J. Math. Anal. Appl., 167 (1) (1992), 4956.

  • [10]

    Dragomir, S. S. and Agarwal, R. P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (5) (1998), 9195.

    • Search Google Scholar
    • Export Citation
  • [11]

    Dragomir, S. S. and Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687696.

    • Search Google Scholar
    • Export Citation
  • [12]

    Dragomir, S. S. and Pearce, C. E. M., Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, 2000, http://rgmia.org/monographs/hemite_hadamard.html.

    • Search Google Scholar
    • Export Citation
  • [13]

    Dragomir, S. S., Pečarić, J. and Persson, L. E., Some inequalities of Hadamard type, Soochow J. Math., 21 (3) (1995), 335341.

  • [14]

    Erden, S. and Sarikaya, M. Z., New Hermite-Hadamard type inequalities for twice differentiable convex mappings via Green function and applications, Moroccan J. Pure Appl. Anal., 2 (2) (2016), 107117.

    • Search Google Scholar
    • Export Citation
  • [15]

    Hadamard, J., Étude sur les propriétés des fonctions entières et an particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171215.

    • Search Google Scholar
    • Export Citation
  • [16]

    Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes. Math., 48 (1) (1994), 100111.

  • [17]

    Hammad, M. A. and Khalil, K., Conformable fractional heat differential equations, Int. J. pure Appl. Math., 94 (2) (2014), 215221.

  • [18]

    Hammad, M. A. and Khalil, R., Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 13 (3) (2014), 177183.

    • Search Google Scholar
    • Export Citation
  • [19]

    Iyiola, O. S. and Nwaeze, E. R., Some new results on the new conformable fractional calculus with application using D'Alambert approach, Prog. Fract. Differ. Appl., 2 (2) (2016), 115122.

    • Search Google Scholar
    • Export Citation
  • [20]

    Khan, M. A., Ali, T., Dragomir, S. S. and Sarikaya, M. Z., Hermite-Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, DOI: 10.1007/s13398-017-0408-5.

    • Search Google Scholar
    • Export Citation
  • [21]

    Khan, M. A., Ali, T. and Khan, T. U., Hermite-Hadamard type inequalities with applications, Fasc. Math., 59 (2017), 5774.

  • [22]

    Khan, M. A., Chu, Y. M., Kashuri, A. and Liko, R., Herimte-Hadamard type fractional integral inequalities for MT(r;g,m,φ)-preinvex functions, J. Comput. Anal. Appl., 26 (8) (2019), 14871503.

    • Search Google Scholar
    • Export Citation
  • [23]

    Khan, M. A., Chu, Y. M., Kashuri, A., Liko, R. and Ali, G., Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Spaces, 2018, Article ID 6928130, pp. 9.

    • Search Google Scholar
    • Export Citation
  • [24]

    Khan, M. A., Khurshid, Y., Ali, T. and Rehman, N., Inequalities for three times differentiable functions, Punjab Univ. J. Math., 48 (2) (2016), 3548.

    • Search Google Scholar
    • Export Citation
  • [25]

    Khan, M. A., Khurshid, Y. and Ali, T., Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenian., 86 (1) (2017), 153164.

    • Search Google Scholar
    • Export Citation
  • [26]

    Khalil, R., Horani, M. Al, Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570.

    • Search Google Scholar
    • Export Citation
  • [27]

    Kirmaci, U. S., Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137146.

    • Search Google Scholar
    • Export Citation
  • [28]

    Kunt, M., Karapinar, D., Turhan, S. and İşcan, İ, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions, J. Inequal. Spec. Funct., 9 (1) (2018), 4557.

    • Search Google Scholar
    • Export Citation
  • [29]

    Leonardi, S. and Stará, J., Regularity results for the gradient of solutions of linear elliptic systems with VMO coefficients and L1,λ data, Forum Math., 22 (5) (2010), 913940.

    • Search Google Scholar
    • Export Citation
  • [30]

    Leonardi, S. and Stará, J., Regularity up to the boundary for the gradient of solutions of linear elliptic systems with VMO coefficients and L1,λ data, Complex Variables and Elliptic Equ., 56 (12) (2011), 10851098.

    • Search Google Scholar
    • Export Citation
  • [31]

    Leonardi, S. and Stará, J., Regularity results for solutions of a class of parabolic systems with measure data, Nonlinear Analysis, 75 (4) (2012), 20692089.

    • Search Google Scholar
    • Export Citation
  • [32]

    Liu, W., Wen, W. and Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766777.

    • Search Google Scholar
    • Export Citation
  • [33]

    Luo, C., Du, T. S., Khan, M. A., Kashuri, A. and Shen, Y., Some k-fractional integrals inequalities through generalized λϕm-MT-preinvexity, J. Comput. Anal. Appl., 27 (4) (2019), 690705.

    • Search Google Scholar
    • Export Citation
  • [34]

    Pearce, C. E. M., Pečarić, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 5155.

    • Search Google Scholar
    • Export Citation
  • [35]

    Roberts, A. W. and Varberg, D. E., Convex functions, Academic Press, New York 1973.

  • [36]

    Sarikaya, M. Z., Saglam, A. and Yildirim, H., On some Hadamard-type inequalities for h-convex functons, J. Math. Inequal., 2 (3) (2008), 335341.

    • Search Google Scholar
    • Export Citation
  • [37]

    Sarikaya, M. Z., Set, E., Yaldiz, H. and Başak, N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 24032407.

    • Search Google Scholar
    • Export Citation
  • [38]

    Set, E., Sarikaya, M. Z. and Gözpinar, A., Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., 26 (2) (2017), 221229.

    • Search Google Scholar
    • Export Citation
  • [39]

    Shioya, H. and Da-te, T., A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 3740.

    • Search Google Scholar
    • Export Citation
  • [40]

    Zhang, Y., Du, T. S., Wang, H., Shen, Y. J. and Kashuri, A., Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 49 (2018) (2018), pp. 30.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)