View More View Less
  • 1 I. Javakhishvili Tbilisi State University, Tbilisi 0186, 2 University str., Georgia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In 1971 Onnewer and Waterman establish a sufficient condition which guarantees uniform convergence of Vilenkin-Fourier series of continuous function. In this paper we consider different classes of functions of generalized bounded oscillation and in the terms of these classes there are established sufficient conditions for uniform convergence of Cesàro means of negative order.

  • [1]

    Agaev, G. N., Vilenkin, N. Ya., Dzhafarli, G. M. and Rubinshtejn, A. I., Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehlm, 1981 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [2]

    Avdispahić, M., Memić, N. and Weisz, F., Maximal functions, Hardy spaces and Fourier multiplier theorems on unbounded Vilenkin groups, J. Math. Anal. Appl., 390 (1) (2012), 6873.

    • Search Google Scholar
    • Export Citation
  • [3]

    Blahota, I. and Gát, G., Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups, Anal. Theory Appl., 24 (1) (2008), 117.

    • Search Google Scholar
    • Export Citation
  • [4]

    Gát, G., On almost everywhere convergence of Fourier series on unbounded Vilenkin groups, Publ. Math. Debrecen, 75 (1–2) (2009), 8594.

    • Search Google Scholar
    • Export Citation
  • [5]

    Gát, G., On the pointwise convergence of Cesàro means of two-variable functions with respect to unbounded Vilenkin systems, J. Approx. Theory, 128 (1) (2004), 6999.

    • Search Google Scholar
    • Export Citation
  • [6]

    Gát, G. and Goginava, U., Almost everywhere convergence of (C, α)-means of quadratical partial sums of double Vilenkin-Fourier series, Georgian Math. J., 13 (3) (2006), 447462.

    • Search Google Scholar
    • Export Citation
  • [7]

    Gát, G. and Goginava, U., Norm convergence of logarithmic means on unbounded Vilenkin groups, Banach J. Math. Anal., 12 (2) (2018), 422438.

    • Search Google Scholar
    • Export Citation
  • [8]

    Gát, G. and Goginava, U., Norm convergence of double Fourier series on unbounded Vilenkin groups, Acta Math. Hungar., 152 (1) (2017), 201216.

    • Search Google Scholar
    • Export Citation
  • [9]

    Goginava, U., On the uniform convergence of Walsh-Fourier series, Acta Math. Hungar., 93 (1–2) (2001), 5970.

  • [10]

    Goginava, U., On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory, 115 (1) (2002), 920.

    • Search Google Scholar
    • Export Citation
  • [11]

    Goginava, U., Uniform convergence of Cesàro means of negative order of double Walsh-Fourier series, J. Approx. Theory, 124 (1) (2003), 96108.

    • Search Google Scholar
    • Export Citation
  • [12]

    Goginava, U., Cesàro means of double Walsh-Fourier series, Anal. Math., 30 (4) (2004), 289304.

  • [13]

    Goginava, U., Uniform summability of double Walsh-Fourier series of functions of bounded partial A-variation, Math. Slovaca, 64 (6) (2014), 14511474.

    • Search Google Scholar
    • Export Citation
  • [14]

    Memić, N., Almost everywhere convergence of some subsequences of Fejér means for integrable functions on some unbounded Vilenkin groups, Math. Slovaca, 67 (1) (2017), 179190.

    • Search Google Scholar
    • Export Citation
  • [15]

    Nagy, K., Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Approx., 16 (3) (2010), 297311.

    • Search Google Scholar
    • Export Citation
  • [16]

    K. Nagy , Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series, Georgian Math. J., 18 (1) (2011), 147162.

  • [17]

    Nagy, K., Approximation by Nörlund means of quadratical partial sums of double Walsh-Kaczmarz-Fourier series, Ukrad'n. Mat. Zh., 68 (1) (2016), 87105, translation in Ukrainian Math. J., 68 (1) (2016), 94114.

    • Search Google Scholar
    • Export Citation
  • [18]

    Onneweer, C. W. and Waterman, D., Uniform convergence of Fourier series on groups, I, Michigan Math. J., 18 (1971) 265273.

  • [19]

    Schipp, F., Wade, W. R., Simon, P. and Pál, J., Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.

    • Search Google Scholar
    • Export Citation
  • [20]

    Tepnadze, T., On the approximation properties of Cesàro means of negative order of Vilenkin-Fourier series, Studia Sci. Math. Hungar., 53, 4 pp. 532544

    • Search Google Scholar
    • Export Citation
  • [21]

    Tevzadze, V. I., Uniform (C, −α) summability of Fourier series with respect to the Walsh-Paley system, Acta Math. Paedagog. Nyházi (N. S.), 22 (1) (2006) 4161. (Electronic.)

    • Search Google Scholar
    • Export Citation
  • [22]

    Zhizhiashvili, L. V., Trigonomeric Fourier series and their conjugates, Tbilisi, 1993 (Russian); English transl.: Kluwer Acad. publ; 1996.

    • Search Google Scholar
    • Export Citation
  • [23]

    Zygmund, A., Trigonometric series, vol. 1, Cambridge Univ. Press, 1959.