Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this note connections between root extensions of monoids and some finiteness conditions on monoids are studied, giving new proofs and generalizing results of Etingof, Malcolmson and Okoh for domains. In the same spirit, results of Jedrzejewicz and Zielinski on root-closed extensions of domains are generalized and sharpened to monoids. Using the same methods, a criterion for being a completely integrally closed domain is generalized to monoids.

  • [1]

    Anderson, D. D. and Mullins, B., Finite Factorization Domains, Proc. Amer. Math. Soc., 124.2 (1996), 389396.

  • [2]

    Chapman, S. T., Halter-Koch, F. and Krause, U., Inside Factorial Monoids and Integral Domains, Journal of Algebra, 252 (2002), 350375.

    • Search Google Scholar
    • Export Citation
  • [3]

    Etingof, P., Malcolmson, P. and Okoh, F., Root Extensions and Factorizations in Affine Domains, Canad. Math. Bull., 53.2 (2010), 247255.

    • Search Google Scholar
    • Export Citation
  • [4]

    Fossum, R. M., The Divisor Class Group of a Krull Domain, Springer (1973)

  • [5]

    Geroldinger, A. and Halter-Koch, F., Non-Unique Factorizations, Pure and Applied Mathematics, 278, Chapman and Hall/CRC, 2006.

  • [6]

    Greuel, G.-M. and Pfister, G., A Singular Introduction to Commutative Algebra, Springer (2002)

  • [7]

    Halter-Koch, F., Ideal Systems, Marcel Dekker, 1998.

  • [8]

    Jedrzejewicz, P. and Zielinski, J., Analogs of Jacobian conditions for subrings, Journal of Pure and Applied Algebra, 221.8 (2017), 21112118.

    • Search Google Scholar
    • Export Citation
  • [9]

    Krause, U., Eindeutige Faktorisierung ohne ideale Elemente, Abh. Braunschweig. Wiss. Ges., 33 (1982), 169177.

  • [10]

    Reinhart, A., On Monoids and Domains whose Monadic Submonoids are Krull, in: Fontana, M. et al. , Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer 307330, 2014.

    • Search Google Scholar
    • Export Citation