View More View Less
  • 1 Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli, Italy
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

A group G is called metahamiltonian if all its non-abelian subgroups are normal. The aim of this paper is to investigate the structure of uncountable groups of cardinality ℵ in which all proper subgroups of cardinality ℵ are metahamiltonian. It is proved that such a group is metahamiltonian, provided that it has no simple homomorphic images of cardinality ℵ. Furthermore, the behaviour of elements of finite order in uncountable groups is studied in the second part of the paper.

  • [1]

    Baer, R., Abzählbar erkennbare gruppentheoretische Eigenschaften, Math. Z., 79 (1962), 344363.

  • [2]

    Casolo, C., Groups with finite conjugacy classes of subnormal subgroups, Rend. Sem. Mat. Univ. Padova, 81 (1989), 107149.

  • [3]

    De Falco, M., de Giovanni, F., Musella, C. and Trabelsi, N., Groups with restrictions on subgroups of infinite rank, Rev. Mat. Iberoamericana, 30 (2014), 537550.

    • Search Google Scholar
    • Export Citation
  • [4]

    De Mari, F. and de Giovanni, F., Groups with few normalizer subgroups, Irish Math. Soc. Bulletin, 56 (2005), 103113.

  • [5]

    de Giovanni, F. and Trombetti, M., Groups of infinite rank with a locally finite term in the lower central series, Beitr. Algebra Geom., 56 (2015), 735741.

    • Search Google Scholar
    • Export Citation
  • [6]

    de Giovanni, F. and Trombetti, M., Uncountable groups with restrictions on subgroups of large cardinality, J. Algebra, 447 (2016), 383396.

    • Search Google Scholar
    • Export Citation
  • [7]

    de Giovanni, F. and Trombetti, M., Nilpotency in uncountable groups, J. Austral. Math. Soc., 103 (2017), 5969.

  • [8]

    de Giovanni, F. and Trombetti, M., Countably recognizable classes of groups with restricted conjugacy classes, International J. Group Theory, 7 (2018), n.1, 516.

    • Search Google Scholar
    • Export Citation
  • [9]

    de Giovanni, F. and Trombetti, M., A note on uncountable groups with modular subgroup lattice, Arch. Math. (Basel), 107 (2016), 581587.

    • Search Google Scholar
    • Export Citation
  • [10]

    de Giovanni, F. and Trombetti, M., Countable recognizability and nilpotency properties of groups, Rend. Circ. Mat. Palermo, 66 (2017), 399412.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kegel, O. H. and Wehrfritz, B. A. F., Locally Finite Groups, North-Holland, Amsterdam (1973).

  • [12]

    Newman, M. F. and Wiegold, J., Groups with many nilpotent subgroups, Arch. Math. (Basel), 15 (1964), 241250.

  • [13]

    Obraztsov, V. N., An embedding theorem for groups and its corollaries, Math. USSR-Sb., 66 (1990), 541553.

  • [14]

    Robinson, D. J. S., Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964), 2138.

  • [15]

    Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972).

  • [16]

    Romalis, G. M. and Sesekin, N. F., Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap., 5 (1966), 101106.

  • [17]

    Romalis, G. M. and Sesekin, N. F., Metahamiltonian groups II, Ural. Gos. Univ. Mat. Zap., 6 (1968), 5052.

  • [18]

    Romalis, G. M. and Sesekin, N. F., Metahamiltonian groups III, Ural. Gos. Univ. Mat. Zap., 7 (1969/70), 195199.

  • [19]

    Shelah, S., On a problem of Kurosh, Jónsson groups, and applications, in: Word Problems II - the Oxford Book, North-Holland, Amsterdam (1980), 373394.

    • Search Google Scholar
    • Export Citation
  • [20]

    Smith, H., Groups with few non-nilpotent subgroups, Glasgow Math. J., 39 (1997), 141151.