View More View Less
  • 1 Capital Normal University, Beijing 100048, People's Republic of China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this article, the eigenvalues and eigenvectors of positive binomial operators are presented. The results generalize the previously obtained ones related to Bernstein operators. Illustrative examples are supplied.

  • [1]

    Berens, H. and DeVore, R., A characterisation of Bernstein polynomials, in: Approximation Theory III (E. W. Cheney, Ed.), pp. 213219, Academic Press, New York, 1980.

    • Search Google Scholar
    • Export Citation
  • [2]

    Cooper, S. and Waldron, S., The eigentructure of the Bernstein operator, Journal of Approximation Theory, 105 (2000), 133165.

  • [3]

    Ostrovska, S. and Turan, M., On the eigenvectors of the q-Bernstein operators, Mathematical Methods in the Applied Sciences, 37 (4) (2014), 562570.

    • Search Google Scholar
    • Export Citation
  • [4]

    Derriennic, M. M., Sur l'approximation de fonctions intêgrables sur [0, 1] par des polynômes de Bernstein modifies, J. Approx. Theory, 31 (1981), 325343.

    • Search Google Scholar
    • Export Citation
  • [5]

    Gonska, H., Kacsó, D. and Raşa, I., On Genuine Bernstein-Durrmeyer Operators, Result. Math., 50 (2007), 213225.

  • [6]

    Berens, H. and Xu, Y., On Bernstein-Durrmeyer polynomials with Jacobi weights, in: Approximation Theory and Functional Analysis (C. K. Chui, Ed.), pp. 2546, Academic Press, Boston, 1991.

    • Search Google Scholar
    • Export Citation
  • [7]

    Heilmann, M., Eigenfunctions of Durrmeyer-type modifications of Meyer-König and Zeller operators, Journal of Approximation Theory, 125 (2003), 6373.

    • Search Google Scholar
    • Export Citation
  • [8]

    Rota, G.-C., Kahaner, D. and Odlyzko, A., Finite Operator Calculus, Journal of Mathematical Analysis and Application., 42 (1973), 685760.

    • Search Google Scholar
    • Export Citation
  • [9]

    Rota, G.-C., Shen, J., Taylor, B. D., All polynomials of binomial type are represented by Abel polynomials, Annali Della Scuola Normale Superiore di Pisa Classe di Scienze, 25 (4) (1997), 731738.

    • Search Google Scholar
    • Export Citation
  • [10]

    CrĂciun, M., Approximation operators constructed by means of Sheffer sequences, Revue D'analyse Numérique et de Théorie de L'approximation, 30 (2) (2001), 135150.

    • Search Google Scholar
    • Export Citation
  • [11]

    Ismail, M. E. H., Polynomials of binomial type and approximation theory, Journal of Approximation Theory, 23 (1978), 177186.

  • [12]

    Lupas, L. and Lupas, A., Polynomials of binomial type and approximation operators, Studia University Babes-Bolyai, Mathematica, 32 (4) (1987), 6169.

    • Search Google Scholar
    • Export Citation
  • [13]

    Sablonnier, P., Positive Bernstein-Sheffer operators, Journal of Approximation Theory, 83 (1995), 330341.

  • [14]

    Stancu, D. D., Occorsio, M. R., On approximation by Binomial Operators of Tiberiu Popviciu type, Revue d'Analyse Num. et de Théorie de l'Approximation, 27 (1) (1998), 167181.

    • Search Google Scholar
    • Export Citation
  • [15]

    Lupas, A., Approximation operators of binomial type, new developments in approximation theory (Dortmund, 1998), 175198, International Series of Numerical Mathematics 132, Birkhäuser Verlag Basel/Switzerland 1999.

    • Search Google Scholar
    • Export Citation