View More View Less
  • 1 Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

It is shown that if N(R) is a Lie ideal of R (respectively Jordan ideal and R is 2-torsion-free), then N(R) is an ideal. Also, it is presented a characterization of Noetherian NR rings with central idempotents (respectively with the commutative set of nilpotent elements, the Abelian unit group, the commutative commutator set).

  • [1]

    Amberg, B. and Dickenschied, O., On the adjoint group of a radical ring, Canad. Math. Bull. 38 no. 3 (1995), 262270.

  • [2]

    Birkenmeier, G. F., Heatherly, H. E. and Lee, E. K., Completely prime ideals and associated radicals, in: (eds. S.K. Jain, S.T. Rizvi), Ring Theory (Granville, OH, 1992) Proc. Biennial Ohio State-Denison Conference, World Scientific, Singapore and River Edge (1993) 102129, 373.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bell, H. E., On some commutativity theorem of Herstein, Arch. Math. (Basel), 24 (1973), 3438.

  • [4]

    Chebotar, M., Lee, P.-H. and Puczyłowski, E. R., On prime rings with commuting nilpotent elements, Proc. Amer. Math. Soc., 137 no. 9 (2009), 28992903.

    • Search Google Scholar
    • Export Citation
  • [5]

    Chebotar, M., Lee, P.-H. and Puczyłowski, E. R., On commutators and nilpotent elements in simple rings, Bull. London Math. Soc., 42 no. 2 (2010), 191194.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chen, W., Polynomial rings over NLI rings need not be NLI, Studia Sci. Math. Hung., 52 no. 1 (2015), 129133.

  • [7]

    Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N. and Lee, Y., A concept unifying the Armendariz and NI conditions, Bull. Korean Math. Soc., 48 no. 1 (2011), 115127.

    • Search Google Scholar
    • Export Citation
  • [8]

    Drazin, M. P., Rings with central idempotent or nilpotent elements, Proc. Edinburgh Math. Soc., (2) 9 no. 4 (1958), 157165.

  • [9]

    Faith, C., Algebra II. Ring Theory, Grundlehren der mathematischen Wissenschaften, vol. 191, Springer-Verlag, Berlin New York, 1976.

  • [10]

    Fisher, J. W., Nil subrings of bounded index of nilpotency, J. Algebra, 19 (1971), 509516.

  • [11]

    Fuchs, L., Infinite abelian groups. II, Pure Appl. Math. Vol. 36-II, Academic Press, New York London, 1973.

  • [12]

    Giambruno, A. and Herstein, I. N., Derivations with nilpotent values, Rend. Circ. Mat. Palermo (2), 30 no. 2 (1981), 196206.

  • [13]

    Henriksen, M., Two classes of rings generated by their units, J. Algebra, 31 (1974), 182193.

  • [14]

    Herstein, I. N., A note on rings with central nilpotent elements, Proc. Amer. Math. Soc., 5 (1954), 620.

  • [15]

    Herstein, I. N., Rings with involutions, University of Chicago Press, Chicago, Ill.-London 1976.

  • [16]

    Hong, C. Y., Kim, H. R., Kim, N. R., Kwak, T. R., Lee, Y. and Park, R. S., Rings whose nilpotents form a Levitski radical ring, Comm. Algebra, 35 no. 4 (2007), 13791390.

    • Search Google Scholar
    • Export Citation
  • [17]

    Hwang, S. U., Jeon, Y. C. and Lee, Y., Structure and topological conditions on NI rings, J. Algebra, 302 no. 1 (2006), 186199.

  • [18]

    Klein, A. A. and Bell, H. E., Rings with finitely many nilpotent elements, Comm. Algebra, 22 no. 1 (1994), 349354.

  • [19]

    Klein, A. A. and Bell, H. E., Rings with commuting nilpotents and zero divisors, Results Math., 51 no. 12 (2007), 7385.

  • [20]

    Khurana, D., Marks, G. and Srivastava, A. K., On unit-central rings, Advances in ring theory, 205–212. Trends Math., Birkhäuser/Springer Basel/AG, Basel, 2010.

    • Search Google Scholar
    • Export Citation
  • [21]

    Lam, T. Y., A first course in noncommutative rings, Second Edition, Graduate Texts in Math. 131 Springer-Verlag, New York, 2001.

  • [22]

    Lanski, C., Rings with few nilpotents, Houston J. Math., 18 no. 4 (1992), 577590.

  • [23]

    Marks, G., On 2-primal Ore extensions, Comm. Algebra, 29 no. 5 (2001), 21132123.

  • [24]

    McConnell, J. C. and Robson, J. C., Noncommutative Noetherian rings, with the cooperation of L. W. Small, revised version, Grad. Stud. Math., 30, AMS, Providence, RI, 2001.

    • Search Google Scholar
    • Export Citation
  • [25]

    Nicholson, W. K., Semiperfect rings with abelian group of units, Pacific J. Math., 49 no. 1 (1973), 191198.

  • [26]

    Robinson, D. J. S., A course in the theory of groups, Springer-Verlag, Berlin Heidelberg New York, 1980.

  • [27]

    Šter, J., Rings in which nilpotents form a subring, Carpathian J. Math., 32 no. 2 (2016), 251258.

  • [28]

    Ungor, B., Halicioglu, S., Kose, H. and Harmanci, A., Rings in which every nilpotent element is central, Algebras Groups Geom., 30 no. 1 (2013), 118.

    • Search Google Scholar
    • Export Citation
  • [29]

    Wei, J. and Li, L., Nilpotent elements and reduced rings, Turkish J. Math., 35 no. 2 (2011), 341354.

  • [30]

    Qu, Y. and Wei, J., Rings whose nilpotent elements form a Lie ideal, Studia Sci. Math. Hung., 51 no. 2 (2014), 271284.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)