View More View Less
  • 1 Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

It is shown that if N(R) is a Lie ideal of R (respectively Jordan ideal and R is 2-torsion-free), then N(R) is an ideal. Also, it is presented a characterization of Noetherian NR rings with central idempotents (respectively with the commutative set of nilpotent elements, the Abelian unit group, the commutative commutator set).

  • [1]

    Amberg, B. and Dickenschied, O., On the adjoint group of a radical ring, Canad. Math. Bull. 38 no. 3 (1995), 262270.

  • [2]

    Birkenmeier, G. F., Heatherly, H. E. and Lee, E. K., Completely prime ideals and associated radicals, in: (eds. S.K. Jain, S.T. Rizvi), Ring Theory (Granville, OH, 1992) Proc. Biennial Ohio State-Denison Conference, World Scientific, Singapore and River Edge (1993) 102129, 373.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bell, H. E., On some commutativity theorem of Herstein, Arch. Math. (Basel), 24 (1973), 3438.

  • [4]

    Chebotar, M., Lee, P.-H. and Puczyłowski, E. R., On prime rings with commuting nilpotent elements, Proc. Amer. Math. Soc., 137 no. 9 (2009), 28992903.

    • Search Google Scholar
    • Export Citation
  • [5]

    Chebotar, M., Lee, P.-H. and Puczyłowski, E. R., On commutators and nilpotent elements in simple rings, Bull. London Math. Soc., 42 no. 2 (2010), 191194.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chen, W., Polynomial rings over NLI rings need not be NLI, Studia Sci. Math. Hung., 52 no. 1 (2015), 129133.

  • [7]

    Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N. and Lee, Y., A concept unifying the Armendariz and NI conditions, Bull. Korean Math. Soc., 48 no. 1 (2011), 115127.

    • Search Google Scholar
    • Export Citation
  • [8]

    Drazin, M. P., Rings with central idempotent or nilpotent elements, Proc. Edinburgh Math. Soc., (2) 9 no. 4 (1958), 157165.

  • [9]

    Faith, C., Algebra II. Ring Theory, Grundlehren der mathematischen Wissenschaften, vol. 191, Springer-Verlag, Berlin New York, 1976.

  • [10]

    Fisher, J. W., Nil subrings of bounded index of nilpotency, J. Algebra, 19 (1971), 509516.

  • [11]

    Fuchs, L., Infinite abelian groups. II, Pure Appl. Math. Vol. 36-II, Academic Press, New York London, 1973.

  • [12]

    Giambruno, A. and Herstein, I. N., Derivations with nilpotent values, Rend. Circ. Mat. Palermo (2), 30 no. 2 (1981), 196206.

  • [13]

    Henriksen, M., Two classes of rings generated by their units, J. Algebra, 31 (1974), 182193.

  • [14]

    Herstein, I. N., A note on rings with central nilpotent elements, Proc. Amer. Math. Soc., 5 (1954), 620.

  • [15]

    Herstein, I. N., Rings with involutions, University of Chicago Press, Chicago, Ill.-London 1976.

  • [16]

    Hong, C. Y., Kim, H. R., Kim, N. R., Kwak, T. R., Lee, Y. and Park, R. S., Rings whose nilpotents form a Levitski radical ring, Comm. Algebra, 35 no. 4 (2007), 13791390.

    • Search Google Scholar
    • Export Citation
  • [17]

    Hwang, S. U., Jeon, Y. C. and Lee, Y., Structure and topological conditions on NI rings, J. Algebra, 302 no. 1 (2006), 186199.

  • [18]

    Klein, A. A. and Bell, H. E., Rings with finitely many nilpotent elements, Comm. Algebra, 22 no. 1 (1994), 349354.

  • [19]

    Klein, A. A. and Bell, H. E., Rings with commuting nilpotents and zero divisors, Results Math., 51 no. 12 (2007), 7385.

  • [20]

    Khurana, D., Marks, G. and Srivastava, A. K., On unit-central rings, Advances in ring theory, 205–212. Trends Math., Birkhäuser/Springer Basel/AG, Basel, 2010.

    • Search Google Scholar
    • Export Citation
  • [21]

    Lam, T. Y., A first course in noncommutative rings, Second Edition, Graduate Texts in Math. 131 Springer-Verlag, New York, 2001.

  • [22]

    Lanski, C., Rings with few nilpotents, Houston J. Math., 18 no. 4 (1992), 577590.

  • [23]

    Marks, G., On 2-primal Ore extensions, Comm. Algebra, 29 no. 5 (2001), 21132123.

  • [24]

    McConnell, J. C. and Robson, J. C., Noncommutative Noetherian rings, with the cooperation of L. W. Small, revised version, Grad. Stud. Math., 30, AMS, Providence, RI, 2001.

    • Search Google Scholar
    • Export Citation
  • [25]

    Nicholson, W. K., Semiperfect rings with abelian group of units, Pacific J. Math., 49 no. 1 (1973), 191198.

  • [26]

    Robinson, D. J. S., A course in the theory of groups, Springer-Verlag, Berlin Heidelberg New York, 1980.

  • [27]

    Šter, J., Rings in which nilpotents form a subring, Carpathian J. Math., 32 no. 2 (2016), 251258.

  • [28]

    Ungor, B., Halicioglu, S., Kose, H. and Harmanci, A., Rings in which every nilpotent element is central, Algebras Groups Geom., 30 no. 1 (2013), 118.

    • Search Google Scholar
    • Export Citation
  • [29]

    Wei, J. and Li, L., Nilpotent elements and reduced rings, Turkish J. Math., 35 no. 2 (2011), 341354.

  • [30]

    Qu, Y. and Wei, J., Rings whose nilpotent elements form a Lie ideal, Studia Sci. Math. Hung., 51 no. 2 (2014), 271284.