View More View Less
  • 1 Federal University of Pernambuco, Brazil
  • | 5 Persian Gulf University, Bushehr, Iran
  • | 6 Benha University, Egypt
  • | 7 Marquette University, Milwaukee, WI 53201-1881
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

We study some mathematical properties of a new generator of continuous distributions called the Odd Nadarajah-Haghighi (ONH) family. In particular, three special models in this family are investigated, namely the ONH gamma, beta and Weibull distributions. The family density function is given as a linear combination of exponentiated densities. Further, we propose a bivariate extension and various characterization results of the new family. We determine the maximum likelihood estimates of ONH parameters for complete and censored data. We provide a simulation study to verify the precision of these estimates. We illustrate the performance of the new family by means of a real data set.

  • [1]

    Alexander, C., Cordeiro, G. M., Ortega, E. M. M. and Sarabia, J. M., Generalized beta-generated distributions, Computational Statistics and Data Analysis, 56 (2012), 18801897.

    • Search Google Scholar
    • Export Citation
  • [2]

    Alizadeh, M., Cordeiro, G. M., Nascimento, A. D. C., do Carmo S. Lima, M. and Ortega, E. M. M., Odd-Burr generalized family of distributions with some applications, Journal of Statistical Computation and Simulation, 87 (2017), 367389.

    • Search Google Scholar
    • Export Citation
  • [3]

    Alzaatreh, A., Lee, C. and Famoye, F., A new method for generating families of continuous distributions, Metron, 71 (2013), 6379.

  • [4]

    Bourguignon, M., Silva, R. B. and Cordeiro, G. M., The Weibull-G family of probability distributions, Journal of Data Science, 12 (2014), 5368.

    • Search Google Scholar
    • Export Citation
  • [5]

    Eugene, N., Lee, C. and Famoye, F., Beta-normal distribution and its applications, Communications in Statistics-Theory and Methods, 31 (2002), 497512.

    • Search Google Scholar
    • Export Citation
  • [6]

    Cordeiro, G. M. and de Castro, M., A new family of generalized distributions, Journal of Statistical Computational and Simulation, 81 (2011), 883898.

    • Search Google Scholar
    • Export Citation
  • [7]

    Cordeiro, G. M., Simas, A. B. and Stošić, B. D., Closed form expressions for moments of the beta Weibull distribution, Anais da Academia Brasileira de Ciências, 83 (2011), 357373.

    • Search Google Scholar
    • Export Citation
  • [8]

    Cordeiro, G. M., Alizadeh, M., Tahir, M. H. and Hamedani, G. G., The Beta Odd Log-Logistic Generalized Family of Distributions, Hacettepe University Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics, 73 (2015), 128.

    • Search Google Scholar
    • Export Citation
  • [9]

    Gl૤nzel, W., A characterization theorem based on truncated moments and its application to some distribution families, Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), B, Reidel, Dordrecht (1987), 7584.

    • Search Google Scholar
    • Export Citation
  • [10]

    Glänzel, W., Some consequences of a characterization theorem based on truncated moments, Statistics: A Journal of Theoretical and Applied Statistics, 21 (1990), 613618.

    • Search Google Scholar
    • Export Citation
  • [11]

    Gradshteyn, L. S. and Ryzhik, I. M., Table of integrals, series and products (Jeffrey, Alan; Zwillinger, Daniel, eds.), translated by Scripta Technica, Inc. (6 ed.). Academic Press, Inc.

    • Search Google Scholar
    • Export Citation
  • [12]

    Lee, J. S. and Pottier, E., Polarimetric Radar Imaging: From Basics to Applications, CRC, Boca Raton, 2009.

  • [13]

    Marshall, A. W. and Olkin, I., Life Distributions. Structure of Nonparametric, Semiparametric and Parametric Families, Springer, New York.

    • Search Google Scholar
    • Export Citation
  • [14]

    Mudholkar, G. S. and Srivastava, D. K., Exponentiated Weibull family for analysing bathtub failure rate data, IEEE Transactions on Reliability, 42 (1993), 299302.

    • Search Google Scholar
    • Export Citation
  • [15]

    Nadarajah, S., The exponentiated Gumbel distribution with climate application, Environmetrics, 17 (2005), 1323.

  • [16]

    Nadarajah, S. and Gupta, A. K., Some bivariate gamma distributions, Applied Mathematics Letters, 19 (2006), 767774.

  • [17]

    Nadarajah, S. and Haghighi, F., An extension of the exponential distribution, Statistics, 45 (2011), 543558.

  • [18]

    Nadarajah, S., Cordeiro, G. M. and Ortega, E. M., The Zografos Balakrishnan G family of distributions: Mathematical properties and applications, Communications in Statistics-Theory and Methods, 44 (2015), 186215.

    • Search Google Scholar
    • Export Citation
  • [19]

    Tahir, M. H., Cordeiro, G. M., Alzaatreh, A., Mansoor, M. and Zubair, M., The logistic-X family of distributions and its applications, Communication in Statistics-Theory and Methods, 45 (2016), 73267349.

    • Search Google Scholar
    • Export Citation
  • [20]

    Yousof, H. M., Afify, A. Z., Hamedani, G. G. and Aryal, G., The Burr X generator of distributions for lifetime data, Journal of Statistical Theory and Applications, 16 (2016), 119.

    • Search Google Scholar
    • Export Citation
  • [21]

    Zografos, K. and Balakrishnan, N., On families of beta and generalized gamma generated distributions and associated inference, Statistical Methodology, 6 (2009), 344362.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)