View More View Less
  • 1 I. Javakhishvili Tbilisi State University, 6, Tamarashvili Str, 0177, Tbilisi, Georgia
  • | 2 Georgian Technical University, 77, Kostava St., Tbilisi, Georgia
  • | 3 United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this paper we establish the boundedness of commutators of sublinear operators in weighted grand Morrey spaces. The sublinear operators under consideration contain integral operators such as Hardy-Littlewood and fractional maximal operators, Calderón-Zygmund operators, potential operators etc. The operators and spaces are defined on quasi-metric measure spaces with doubling measure.

  • [1]

    Aimar, H., Rearrangement and continuity properties of BMO(φ) functions on spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 18 (1991), 353362.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bernardis, A., Hartzstein, S. and Pradolini, G., Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type, J. Math. Anal. Appl., 322 (2006) 825846.

    • Search Google Scholar
    • Export Citation
  • [3]

    Capone, C. and Fiorenza, A., On small Lebesgue spaces, J. Function Spaces and Applications, 3 (2005), 7389.

  • [4]

    Chiarenza, F., Frasca, M. and Longo, P., Interior W2,p-estimates for nondivergence ellipic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149168.

    • Search Google Scholar
    • Export Citation
  • [5]

    Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin, 1971.

    • Search Google Scholar
    • Export Citation
  • [6]

    Edmunds, D. E., Kokilashvili, V., and Meskhi, A., Bounded and compact integral operators, Mathematics and its Applications, 543, Kluwer Academic Publishers, Dordrecht, 2002.

    • Search Google Scholar
    • Export Citation
  • [7]

    Di Fratta, G. and Fiorenza, A., A direct approach to the duality of grand and small Lebesgue spaces, Nonlinear Analysis: Theory, Methods and Applications, 70 (7) (2009), 25822592.

    • Search Google Scholar
    • Export Citation
  • [8]

    Fiorenza, A., Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51 (2) (2000), 131148.

  • [9]

    Fiorenza, A., Gupta, B. and Jain, P., The maximal theorem in weighted grand Lebesgue spaces, Studia Math., 188 (2) (2008), 123133.

  • [10]

    Fiorenza, A. and Karadzhov, G. E., Grand and small Lebesgue spaces and their analogs, Journal for Analysis and its Applications, 23 (4) (2004), 657681.

    • Search Google Scholar
    • Export Citation
  • [11]

    Fiorenza, A. and Rakotoson, J. M., Petits espaces de Lebesgue et leurs applications, C.R.A.S. t, 333 (2001), 14.

  • [12]

    Franchi, B., Perec, C. and Wheeden, R. L., Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Func. Anal., 153(1998), 108146.

    • Search Google Scholar
    • Export Citation
  • [13]

    Grafakos, L., Classical and modern Fourier analysis, Graduate Texts in Mathematics, Springer, 2004.

  • [14]

    Giaquinta, M., Multiple integrals in the calculus of variations and non-linear elliptic systems, Princeton Univ. Press, 1983.

  • [15]

    Greco, L., Iwaniec, T. and Sbordone, C., Inverting the p-harmonic operator, Manuscripta Math, 92 (1997), 249258.

  • [16]

    Han, Y., Müller, D. and Yang, D., A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Caratheodory spaces, Abstr. Appl. Anal., 2008, Art. ID 893409, 250 pp.

    • Search Google Scholar
    • Export Citation
  • [17]

    Iwaniec, T. and Sbordone, C., On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119 (1992), 129143.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kokilashvili, V., Weighted problems for operators of harmonic analysis in some Banach function spaces, Lecture course of Summer School and Workshop “Harmonic Analysis and Related Topics” (HART2010), Lisbon, (June) 2125, https://www.math.tecnico.ulisboa.pt/~hart2010/kokilashvili.pdf, 2010.

    • Search Google Scholar
    • Export Citation
  • [19]

    Kokilashvili, V. and Meskhi, A., Two-weight norm estimates for sublinear integral operators in variable exponent Lebesgue spaces, Studia Sci. Math. Hungarica, 51(2014), (No).3, 384406

    • Search Google Scholar
    • Export Citation
  • [20]

    Kokilashvili, V. and Meskhi, A., The Boundedness of sublinear operators in weighted Morrey spaces defined on spaces of homogeneous type, in: Jain P., Schmeisser H. J. (eds), Function Spaces and Inequalities, Springer Proceedings in Mathematics and Statistics, vol. 206, pp. 193211, Springer, Singapore, 2017.

    • Search Google Scholar
    • Export Citation
  • [21]

    Kokilashvili, V. and Meskhi, A., Potentials with product kernels in grand Lebesgue spaces: One-weight criteria, Lithuanian Math. J., 53 (2013), (No).1, 2739.

    • Search Google Scholar
    • Export Citation
  • [22]

    Kokilashvili, V., Meskhi, A. and Rafeiro, H., Boundedness of sublinear operators in weighted grand Morrey spaces (Russian), Matematicheskie Zametki, 102(2017), No. 5, 721735. English Translation: in Mathematical Notes, 102 (2017), (No). 5, 6981.

    • Search Google Scholar
    • Export Citation
  • [23]

    Kokilashvili, V., Meskhi A., Rafeiro, H. and Samko, S., Integral operators in non-standard function spaces: Variable exponent Hölder, Morrey-Campanato and grand spaces, Volume 2, Birkäuser/Springer, Heidelberg, 2016.

    • Search Google Scholar
    • Export Citation
  • [24]

    Komori, Y. and Shirai, S., Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282(2009), 219231.

  • [25]

    Kufner, A., John, O. and Fučik, S., Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague, 1977.

    • Search Google Scholar
    • Export Citation
  • [26]

    Macías, R. A. and Segovia, C., Lipschitz functions on spaces of homogeneous type, Adv. Math., 33 (1979), 257270.

  • [27]

    MacManus, P. and Pérez, C., Generalized Poincaré inequalities: Sharp Self-Improving Properties, Internat. Math. Res. Not., 2 1998, 101116.

    • Search Google Scholar
    • Export Citation
  • [28]

    Meskhi, A., Criteria for the boundedness of potential operators in grand Lebesgue spaces, Proc. A. Razmadze Math. Inst., 169 (2015), 119132.

    • Search Google Scholar
    • Export Citation
  • [29]

    Meskhi, A., Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces, Proc. A. Razmadze Math. Inst., 151 (2009), 139143.

    • Search Google Scholar
    • Export Citation
  • [30]

    Meskhi, A., Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Variables and Elliptic Equations, 56(1011) (2011), 10031019.

    • Search Google Scholar
    • Export Citation
  • [31]

    Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1) (1938), 126166.

    • Search Google Scholar
    • Export Citation
  • [32]

    Muckehoupt, B. and Wheeden, R. L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261274.

    • Search Google Scholar
    • Export Citation
  • [33]

    Mustafayev, R. Ch., On boundedness of sublinear operators in weighted Morrey spaces, Azerbaijan J. Math., 2(2012), (No).1, 6375.

  • [34]

    Pradolini, G., Salinas, O., and Fe, S., Commutators of singular integrals on spaces of homogeneous type, Czechoslovak Math. J., 57 (132) (2007), 7593.

    • Search Google Scholar
    • Export Citation
  • [35]

    Rafeiro, H., A note on boundedness of operators in Grand Grand Morrey spaces, in: A. Almeida, L. Castro, F-O Speck, editors, Advances in harmonic analysis and operator theory, the Stefan Samko anniversary volume. Basel: Birkhäuser; 2013. pp. 349356.

    • Search Google Scholar
    • Export Citation
  • [36]

    Rafeiro, H., Samko, N. and Samko, S., Morrey-Campanato spaces: an overview, Operator Theory: Advances and Applications, Birkhaäuser, Basel, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics (The Vladimir Rabinovich Anniversary Volume), volume 228 pp. 293323, 2013.

    • Search Google Scholar
    • Export Citation
  • [37]

    Samko, S. G. and Umarkhadzhiev, S. M., On Iwaniec-Sbordone spaces on sets which may have infinite measure, Azerb. J. Math., 1 (1) (2010) 6784.

    • Search Google Scholar
    • Export Citation
  • [38]

    Shi, S., Fu, Z. and Zhao, F., Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations, J. Inequal. Appl., 2013:390 (2013).

    • Search Google Scholar
    • Export Citation
  • [39]

    Strömberg, J. O. and Torchinsky, A., Weighted Hardy spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)