View More View Less
  • 1 University S. M. Ben Abdellah, Box 2202, Morocco
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this article, we study the class of rings in which every regular locally principal ideal is projective called LPP-rings. We investigate the transfer of this property to various constructions such as direct products, amalgamation of rings, and trivial ring extensions. Our aim is to provide examples of new classes of commutative rings satisfying the above-mentioned property.

  • [1]

    Ali, M. M., Idealization and Theorems of D. D. Anderson, Comm. Algebra, 34 (2006), 44794501.

  • [2]

    Ali, M. M., Idealization and Theorems of D. D. Anderson II, Comm. Algebra, 35 (2007), 27672792.

  • [3]

    Anderson, D. D. and Winders, M., Idealization of a module, J. Commut. Algebra, 1 (2009), no. 1, 356.

  • [4]

    Anderson, D. D. and Roitman, M., A characterization of cancellation ideals, Proc. Amer. Math. Soc., 125 (1997), 28532854.

  • [5]

    Anderson, D. D. and Zafrullah, M., Integral domains in which nonzero locally principal ideals are invertible, Comm. Algebra, 39 (2011), 933941.

    • Search Google Scholar
    • Export Citation
  • [6]

    Ashrafi, N. and Nasibi, E., Rings with many regular elements, Commun. Korean Math. Soc., 32 (2) (2017), 267276.

  • [7]

    Bakkari, C., Kabbaj, S. and Mahdou, N., Trivial extension definided by Prûfer conditions, J. Pure Appl. Algebra, 214 (2010), 5360.

  • [8]

    Bastida, E. and Gilmer, R., Overrings and divisorial ideals of rings of the form D + M, Mich. Math. J., 20 (1973), 7995.

  • [9]

    Bazzoni, S., Class semigroups of Prüfer domains, J. Algebra, 184 (1996), 613631.

  • [10]

    Brewer, J. W. and Rutter, E. A., A note on finitely generated ideals which are locally principal, Proc. Amer. Math. Soc., 31 (1972), no. 2.

    • Search Google Scholar
    • Export Citation
  • [11]

    Brewer, J. W. and Rutter, E. A., D + M constructions with general overrings, Mich. Math. J., 23 (1976), 3342.

  • [12]

    Bourbaki, N., Commutative Algebra Chapters 1–7, Springer, (1989).

  • [13]

    D'Anna, M., Finocchiaro, C. and Fontana, M., Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, (2009), 155172.

    • Search Google Scholar
    • Export Citation
  • [14]

    D'Anna, M., Finocchiaro, C. A. and Fontana, M., New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra, 44 (2016), 18361851.

    • Search Google Scholar
    • Export Citation
  • [15]

    D'Anna, M., Finocchiaro, C. A. and Fontana, M., Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra, 214 (2010), 16331641.

    • Search Google Scholar
    • Export Citation
  • [16]

    D'Anna, M. and Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6 (2007), 443459.

    • Search Google Scholar
    • Export Citation
  • [17]

    Faith, C., Algebra: Rings, Modules and Categories, Springer-Verlag, (1981).

  • [18]

    Glaz, S., Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin, (1989).

  • [19]

    Haghany, A., Hopfcity and co-Hopfcity for Morita contexts, Comm. Algebra, 27 (1999), no. 1, 477492.

  • [20]

    Holland, W. C., Martinez, J., McGovern, W. Wm. and Tesemma, M., Bazzoni’s Conjecture, J. Algebra, 320 (2008), 17641768.

  • [21]

    Huckaba, J. A., Commutative rings with zero divisors, Marcel Dekker, New York-Basel, (1988).

  • [22]

    Kabbaj, S. and Mahdou, N., Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32 (2004), no. 10, 39373953.

  • [23]

    Louartiti, K. and Mahdou, N., Transfer of multiplication-like conditions in amalgamated algebra along an ideal, Afr. Diaspora J. Math., 14 (2012), no. 1, 119125.

    • Search Google Scholar
    • Export Citation
  • [24]

    Mahdou, N., On Costa's conjecture, Comm. Algebra, 29 (2001), 27752785.