View More View Less
  • 1 University of Rzeszow, 35-310 Rzeszow, Poland
  • | 2 Menoufia University, Shebin Elkom 32511, Egypt
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

By making use of the pre-Schwarzian norm given by
f=supzU(1|z|2)|f(z)f(z)|,
we obtain such norm estimates for Hohlov operator of functions belonging to the class of uniformly convex functions of order α and type β. We also employ an entirely new method to generalize and extend the results of Theorems 1, 2 and 3 in . Finally, some inequalities concerning the norm of the pre-Schwarzian derivative for Dziok-Srivastava operator are also considered.
  • [1]

    Becker, J., Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, Journal für die reine und angewandte Mathematik, 255 (1972), 2343 (in German).

    • Search Google Scholar
    • Export Citation
  • [2]

    Becker, J., Pommerenke, Ch., Schlichtheitskriterien und Jordangebiete, Journal für die reine und angewandte Mathematik, 354 (1984), 7494.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bernardi, S. D., Convex and starlike univalent functions, Transactions of the American Mathematical Society, 135 (1969), 429446.

  • [4]

    Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of unifomly convex functions and a corresponding class of starlike functions, Tamkang Journal of Mathematics, 28 (1997), 1732.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bulboacă, T., Differential Subordinations and Superordinations. New Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

  • [6]

    Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.

  • [7]

    Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Applied Mathematics and Computation, 103 (1999), 113.

    • Search Google Scholar
    • Export Citation
  • [8]

    Goodman, A. W., On uniformly convex functions, Annales Polonici Mathematici, 56 (1991), 8792.

  • [9]

    Goodman, A. W., On uniformly starlike functions, Journal of Mathematical Analysis and Applications, 155 (1991), 364370.

  • [10]

    Hohlov, Yu. E., Operators and operations in the class of univalent functions, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 10 (1978), 8389 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [11]

    Hornich, H., Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, Monatshefte für Mathematik, 73 (1969), 3645.

    • Search Google Scholar
    • Export Citation
  • [12]

    Kanas, S., Wisniowska, A., Conic regions and k-uniform convexity, Journal of Computational and Applied Mathematics, 105 (1999), 327336.

    • Search Google Scholar
    • Export Citation
  • [13]

    Kanas, S., Wisniowska, A., Conic regions and k-starlike functions, Revue Roumaine de Mathématique Pures et Appliquées, 45 (2000), 647657.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kim, Y. C., Sugawa, T., Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain Journal of Mathematics, 32 (2002), 179200.

    • Search Google Scholar
    • Export Citation
  • [15]

    Kim, Y. C., Ponnusamy, S., Sugawa, T., Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives, Journal of Mathematical Analysis and Applications, 299 (2004), 433447.

    • Search Google Scholar
    • Export Citation
  • [16]

    Ma, W., Minda, D., Uniformly convex functions, Annales Polonici Mathematici, 57 (1992), 166175.

  • [17]

    Ma, W., Minda, D., A unified treatment of some special classes of univalent functions. in Proceedings of the conference on complex analysis, Z. Li, F. Ren, L. Lang and S. Zhang (Eds.), Int. Press, (1994), 157169.

    • Search Google Scholar
    • Export Citation
  • [18]

    Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., vol. 255, Marcel Dekker, Inc., New York, 2000.

    • Search Google Scholar
    • Export Citation
  • [19]

    Rønning, F., On starlike functions associated with parabolic regions, Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica, 45 (1991), 117122.

    • Search Google Scholar
    • Export Citation
  • [20]

    Rønning, F., Unifomly convex functions and a corresponding class of starlike functions, Proceedings of the American Mathematical Society, 118 (1993), 190196.

    • Search Google Scholar
    • Export Citation
  • [21]

    Ruscheweyh, St., Convolutions in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.

  • [22]

    Ruscheweyh, St., Sheil-Small, T., Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Commentarii Mathematici Helvetici, 48 (1973), 119135.

    • Search Google Scholar
    • Export Citation
  • [23]

    Ruscheweyh, St., Singh, V., On the order of starlikeness of hypergeometric functions, Journal of Mathematical Analysis and Applications, 113 (1986), 111.

    • Search Google Scholar
    • Export Citation
  • [24]

    Silverman, H., Univalent functions with negative coefficients, Proceedings of the American Mathematical Society, 51 (1975), 109116.

  • [25]

    Silverman, H., Starlike and convexity properties for hypergeometric functions, Journal of Mathematical Analysis and Applications, 172 (1993), 574581.

    • Search Google Scholar
    • Export Citation
  • [26]

    Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)