View More View Less
  • 1 Graz University of Technology, Kopernikusgasse 24/II, A-8010 Graz, Austria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

Let {P n}n≥0 be the sequence of Padovan numbers defined by P0 = 0, P1 = 1, P2 = 1, and Pn+3 = Pn+1 + Pn for all n ≥ 0. In this paper, we find all integers c admitting at least two representations as a difference between a Padovan number and a power of 3.

  • [1]

    Baker, A. and Davenport, H., The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Q. J. Math.., 20(1) (1969), 129137,

  • [2]

    Baker, A. and Wüstholz, G., Logarithmic forms and Diophantine geometry, vol. 9. Cambridge University Press, 2008.

  • [3]

    Bugeaud, Y., Mignotte, M. and Siksek, S., Classical Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math., 163(2) (2006), 9691018.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bravo, J. J., Luca, F. and Yazán, K., On Pillai's problem with Tribonacci numbers and powers of 2, Bull. Korean Math. Soc. 54(3) (2017), 10691080,

    • Search Google Scholar
    • Export Citation
  • [5]

    Chim, K. C., Pink, I. and Ziegler, V., On a variant of Pillai's problem, Int. J. Number Theory, 13(7) (2017), 17111727,

  • [6]

    Chim, K. C., Pink, I. and Ziegler, V., On a variant of Pillai's problem II, J. Number Theory, 183 (2018), 269290.

  • [7]

    Ddamulira, M., On the problem of Pillai with Fibonacci numbers and powers of 3, Bol. Soc. Mat. Mex., To appear, 2019.

  • [8]

    Ddamulira, M., On the problem of Pillai with Tribonacci numbers and powers of 3, J. Integer Seq., 22(5) (2019), Art. 19.5.6.

  • [9]

    Ddamulira, M. and Luca, F., On a problem of Pillai with k-generalized Fibonacci numbers and powers of 3, Preprint, 2019.

  • [10]

    Ddamülira, M., Lüca, F. and Rakotomalala, M., On a problem of Pillai with Fibonacci numbers and powers of 2, Proc. Indian Acad. Sci. Math. Sci., 127(3) (2017), 411421.

    • Search Google Scholar
    • Export Citation
  • [11]

    Ddamulira, M., Gómez Ruiz, C. A. and Luca, F., On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2, Monatsh. Math., 187(4) (2018), 635664.

    • Search Google Scholar
    • Export Citation
  • [12]

    García Lomeli, A. M. and Hernández Hernández, S., Pillai's problem with Padovan numbers and powers of two, Rev. Colombiana Mat., 53(1) (2019), 114.

    • Search Google Scholar
    • Export Citation
  • [13]

    Hernane, M. O., Luca, F., Rihane, S. E. and Togbé, A., On Pillai's problem with Pell numbers and powers of 2, Hardy-Ramanujan J., 41 (2018), 2231.

    • Search Google Scholar
    • Export Citation
  • [14]

    Hernandez, S. H., Luca, F. and Rivera, L. M. On Pillai's problem with the Fibonacci and Pell sequences, Bol. Soc. Mat. Mex., 2018.

  • [15]

    Dujella, A. and Pethő, A., A generalization of a theorem of Baker and Davenport, Q. J. Math., 49(195) (1998), 291306.

  • [16]

    Gúzman, S. S. and Luca, F., Linear combinations of factorials and s-units in a binary recurrence sequence, Ann. Math. Qué., 38(2) (2014), 169188.

    • Search Google Scholar
    • Export Citation
  • [17]

    Herschfeld, A., The equation 2x − 3y = d, Bull. Amer. Math. Soc., 41 (1935), 631.

  • [18]

    Herschfeld, A., The equation 2x − 3y = d, Bull. Amer. Math. Soc., 42 (1936), 231234.

  • [19]

    Matveev, E. M. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64(6) (2000), 125180, in Russian; English translation in Izv. Math. 64(6) (2000), 12171269.

    • Search Google Scholar
    • Export Citation
  • [20]

    Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2006), 167195.

  • [21]

    OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2019, https://oeis.org.

  • [22]

    Pillai, S. S. On ax −by = c, J. Indian Math. Soc. (N.S.), 2 (1936), 119122.

  • [23]

    Pillai, S. S. A correction to the paper On ax − by = c, J. Indian Math. Soc. (N.S.), 2 (1937), 215.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)